Afaq Ahmad


Afaq Ahmad

LinkedIn Profile

——————————————————————————————————————————–

The University of Memphis logo
  • The University of Memphis
    Adjunct Professor
    1 year 4 months
    Teaching Design of Steel Structures to 3rd Year students
    January 2024 – Present (8 months)
    Fulbright Scholar
    May 2023 – Present (1 year 4 months)
    Tennessee, United States
UET Taxila logo

——————————————————————————————————————————–

The University of Memphis logo
  • Post Doc, Structural Engineering
    May 2023 – May 2024
Heriot-Watt University logo
  • Ph.D. in Civil Engineering, Structural Engineering
    Oct 2014 – Sep 2018
University of Engineering and Technology, Taxila logo
  • M.Sc, STRUCTURE (CIVIL)
    2009 – 2011

At CAEAssistant.com, we collaborate with a distinguished group of researchers who bring a wealth of academic and industry experience to our platform. These experts are not only leading voices in their respective fields but also active contributors to cutting-edge research, with numerous ISI-indexed publications and industry-relevant projects under their belts. Their deep expertise in areas such as finite element analysis, composite materials, and advanced simulation techniques ensures that the courses they create are both academically rigorous and practically valuable. By learning from these accomplished professionals, our students gain access to the latest knowledge and insights, empowering them to excel in their careers and research endeavors.

Showing all 5 results

Analysis of Plain and Reinforced Concrete Structures with ABAQUS | Validation with Experiments

 120.0

This comprehensive package offers four different workshops focused on the analysis of plain and fiber-reinforced concrete structures using ABAQUS. Designed for professionals, researchers, and students, it provides hands-on learning in modeling, simulating, and validating concrete structures under various conditions. Each workshop dives into specific aspects of concrete behavior, from flexural to compressive strength, incorporating the latest sustainable practices through the use of recycled materials. The package ensures mastery of ABAQUS, offering practical insights and a cost-effective path to advanced concrete analysis and safer, more durable infrastructure design.

Stress-strain characteristic of SFRC using recycled fibres | An Abaqus Simulation

 40.0

This training utilizes Abaqus software to simulate and analyze the stress-strain characteristics of Steel Fiber Reinforced Concrete (SFRC) using recycled fibers. The importance of this work lies in its contribution to sustainable construction practices by validating the effectiveness of recycled steel fibers in enhancing concrete's mechanical properties. Through advanced finite element analysis (FEA), the project addresses challenges in accurately modeling SFRC's post-cracking behavior, ensuring that the simulations are aligned with experimental data for reliable results. Abaqus' capabilities in nonlinear material modeling, stress-strain simulation, and principal stress analysis significantly improve the accuracy and reliability of the research, making it a valuable tool for both academia and industry.

Nonlinear Analysis of RC Columns Using ABAQUS | Validation with Experimental Data

 40.0

Reinforced Concrete (RC) columns are critical components in civil engineering, essential for the stability of buildings, bridges, and infrastructure during seismic events. This study leverages ABAQUS, a powerful finite element analysis (FEA) software, to simulate the seismic performance of RC columns. By modeling columns in 3D and using ABAQUS's advanced tools, we replicate experimental conditions to analyze their behavior under seismic loads. Numerical simulations offer the advantage of exploring various scenarios quickly and cost-effectively, while also allowing for extensive parametric studies. The study details how ABAQUS models both concrete and steel reinforcement, accounts for interaction effects, and applies appropriate loading and boundary conditions. The simulations provide valuable insights into failure modes, load-displacement responses, and crack patterns, offering a comprehensive understanding of RC column performance in seismic scenarios.

Analysis of Steel-Fiber Reinforced Concrete (SFRC) Beams with Abaqus

 40.0
Steel-Fiber Reinforced Concrete (SFRC) is an innovative composite material that enhances the structural integrity of traditional concrete by incorporating steel fibers, which improve toughness and ductility. This makes SFRC particularly valuable in earthquake-prone regions, where its ability to resist cracking and absorb energy is critical. The analysis of SFRC beams, through both experimental and numerical methods like finite element analysis (FEA) in Abaqus, provides insights into their behavior under seismic loads, highlighting benefits like enhanced energy dissipation and ductility. Such analysis is essential for designing resilient structures, offering significant advantages to engineers, construction companies, researchers, and policymakers.

Fiber Reinforced Concrete Beams | An Abaqus Simulation

 30.0
Fiber Reinforced Concrete (FRC) incorporates fibers into the concrete matrix to enhance its mechanical properties. For example, we can refer to tensile strength, toughness, and impact resistance. This innovation reduces concrete’s inherent brittleness, making it more ductile and capable of withstanding higher stresses without failure. FRC’s ability to bridge cracks and improve durability makes it ideal for demanding structural applications, including industrial floors, pavements, bridge decks, and airport runways. Accurate analysis of FRC beams, particularly their flexural behavior, is crucial for predicting performance under real-world conditions. We use Abaqus, a powerful finite element analysis software, to simulate and analyze these beams. It provides insights into how fiber content, concrete strength, and reinforcement ratios affect structural performance. These simulations provide valuable data for engineers, researchers, and students, aiding in the design and optimization of FRC structures.