Showing all 2 results

Abaqus Kelvin Voigt Viscoelastic Simulation Using UMAT and VUMAT Subroutines

270.0
A viscoelastic material exhibits characteristics of both solids and fluids when subjected to stress. This distinct behavior makes them useful in various applications. To use viscoelastic materials in various applications, we need to predict their behavior under different loading conditions. This tutorial discusses in detail how numerical methods address this matter (Abaqus kelvin voigt viscoelastic). The Kelvin-Voigt model describes viscoelastic behavior using a spring and a damper in parallel (kelvin voigt model abaqus). It effectively predicts creep, simulates material responses to impacts, and determines viscoelastic properties of materials like foams, rubbers, and biological tissues. Despite its strengths, it has limitations in describing stress relaxation. This tutorial focuses on implementing the Kelvin-Voigt model in Abaqus CAE using UMAT and VUMAT subroutines. While these subroutines are powerful, they require Fortran knowledge, posing a challenge. To assist, the tutorial provides a step-by-step guide on reviewing the model's formulation and writing the subroutines for both standard and explicit solvers. The tutorial demonstrates capturing damage in a problem, but the results are general, such as stress and displacement. You can customize the subroutine for your models and extract specific results without significant difficulty.
Coming soon...

Viscoplasticity Abaqus Simulation Using UMAT Subroutine | Perzyna Viscoplastic Model

270.0

Viscoplasticity describes the rate-dependent inelastic behavior of materials, where deformation depends on both stress magnitude and application speed. This concept is crucial in many engineering applications, such as designing structures under dynamic loads, modeling soil behavior during earthquakes, and developing materials with specific mechanical properties. Viscoplasticity Abaqus simulation, especially using Abaqus with UMAT subroutines, are vital for understanding, predicting, and optimizing the behavior of viscoplastic materials. This tutorial focuses on implementing the Perzyna viscoplasticity model in Abaqus. The Perzyna viscoplastic model, a strain rate-dependent viscoplasticity model, relates stress to strain through specific constitutive relations. This involves defining plastic strain rate based on stress state, internal variables, and relaxation time. The tutorial provides general UMAT codes for viscoplastic analysis, yielding results like stress fields essential for various engineering applications. These simulations help in predicting permanent deformations, assessing structural failure points, and analyzing stability under different loads, benefiting fields such as aerospace, automotive, civil engineering, and energy.

Coming soon...