HOW TO WRITE ABAQUS VUMAT SUBROUTINE

With a Workshops on an Isotropic Isothermal Model

Stre	et A	ddre	ess	
01	OT		\sim	

Phone

Email

ity, ST ZIP Code

Table of Contents

Introduction	3
1- UMAT vs. VUMAT: How to choose the appropriate subroutine for your needs.	4
2- UMAT vs VUMAT Subroutine: Differences	5
3- How to Implement VUMAT in Abaqus Model?	7
3-1- Subroutine's interface	9
3-1- Header	
3-1-1- Variables to be defined	
3-1-2- Dimensions of StressNew and Statenew in VUMAT subroutine	13
3-1-3- Variables passed in for information	14
4- Workshops	
Workshop 1: Isotropic Isothermal problem	16
Results	

- support@CAEassistant.comm
 - Carrer de Jaume II ,46015,Valencia ,Spair

Writing VUMAT Abaqus subroutine

Introduction

UMAT and **VUMAT** are two of the most widely used subroutines in Abaqus, enabling you to define custom materials within the software. In another <u>FREE PDF</u>, we covered this topic in detail, providing an in-depth discussion of the UMAT subroutine, along with two workshops.

In the current PDF, our focus is on the VUMAT subroutine instead. For better understanding, we have prepared a workshop, where we explain how to model a material using VUMAT in Abaqus.

By reading this PDF, you will be able to write your first VUMAT subroutine.

The input files and the VUMAT code related to the workshop are available on our GitHub page, and you can download them for free.

- support@CAEassistant.comm
 - Carrer de Jaume II ,46015,Valencia ,Spain

1- UMAT vs. VUMAT: How to choose the appropriate subroutine for your needs

In general, the difference between UMAT and VUMAT is that UMAT is developed for the Abaqus Standard solver, while VUMAT is developed for the Abaqus Explicit solver.

The advantage of the Explicit solver is that it does not require the formation of the stiffness matrix or convergence control, as is the case with the Implicit or static solvers. Therefore, the solution progresses incrementally without checking for convergence after each increment.

5 +1 (740) 966-1814

support@CAEassistant.comm

For this reason, the Explicit solver is typically used for dynamic problems and severe nonlinear problems, where convergence in Static solver can be challenging.

Notice that, when the mesh is very fine, the increments become small, and the Explicit solver can become time-consuming. In such cases, using the static solver may be more efficient.

Depending on your problem, you should first determine which solver to use and then select the appropriate subroutine, either UMAT or VUMAT. If you'd like to learn more about this topic, we have a blog post that explains it, and you can read it through <u>this link</u>.

2- UMAT vs VUMAT Subroutine: Differences

UMAT and VUMAT serve similar purposes in Abaqus. Their main difference is that UMAT is used for solving problems with the standard solver, while VUMAT is used for solving problems with the explicit solver. But do you think there are other differences as well?

• The first difference is that in VUMAT, you don't need to define the Jacobian matrix; it's enough to define the stress components in the code.

The second difference is that the order of the stress and strain components in **VUMAT** differs from that in **UMAT**. For symmetric 3D materials, the order is as follows:

) +1 (740) 966-1814

support@CAEassistant.comm

UMAT	VUMAT
$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{31} \\ \sigma_{12} \end{pmatrix}$	$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{pmatrix}$

• Third Difference: In UMAT, the stran vector provides the engineering shear strain in the following form.

In contrast, its equivalent in VUMAT is stored as **strainIncrement**, which represents the strain increment and is expressed as follows.

 $\begin{array}{l} \Delta \varepsilon_{11} \\ \Delta \varepsilon_{22} \\ \Delta \varepsilon_{33} \\ \Delta \varepsilon_{12} \\ \Delta \varepsilon_{23} \\ \Delta \varepsilon_{23} \end{array}$

Therefore, to calculate the stress in VUMAT, we need to multiply the stiffness by twice the increment of shear strain values.

CAEassistant.com

- support@CAEassistant.comm
- Carrer de Jaume II ,46015,Valencia ,Spair

3- How to Implement VUMAT in Abaqus Model?

Implementing **VUMAT** in Abaqus is similar to implementing **UMAT**. You can define the material as shown in the figure below, with the only difference being that you need to define the step as explicit instead of general static or implicit.

Next, as shown in the next figure, click on General and select User Material.

🜩 Edit Material
Name: Material-1
Description:
Material Behaviors
<u>General</u> <u>M</u> echanical <u>T</u> hermal <u>E</u> lectrical/Magnetic <u>O</u> ther
Density
Dep <u>v</u> ar
<u>Regularization</u>
User Material
User Defined <u>F</u> ield
User <u>O</u> utput Variables

When you select this option, a table similar to the one shown in next figure will appear.

- support@CAEassistant.comm
- Carrer de Jaume II ,46015,Valencia ,Spain

≑ Edit Material	
Name: Material-1	
Description:	
Material Behaviors	
User Material	
<u>G</u> eneral <u>M</u> echanical <u>T</u> hermal <u>E</u> lectrical/Magnetic <u>O</u> th	ner
User Material	
User material type: Mechanical	
Hybrid formulation: Incremental	Markanial
Use unsymmetric material stiffness matrix	Mechanical
UUMAT defines effective modulus	Mechanical
Data	Thermal
Mechanical Constants	Thermomechanical

As shown in figure, you can define a series of mechanical or thermal constants in this table, as we have discussed with details for the <u>PDF</u> on the implementation of UMAT subrputine.

• Notive that, if your material is unsymmetric and you enable the respective checkbox, make sure to define the stress components in the VUMAT code according to the following format.

 $\sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \\ \sigma_{21} \\ \sigma_{32} \\ \sigma_{13}$

Finally, you need to specify the path to the Fortran file containing the VUMAT subroutine, in your Abaqus model, for its implementation (according to the next figure).

- support@CAEassistant.comm
- Carrer de Jaume II ,46015,Valencia ,Spain

⇐ Edit JobName: Job-1	×
Model: Model-1	
Analysis product: Unknown	
Description:	
Submission General Memory Parallelization	Precision
Preprocessor Printout	
Print an echo of the input data	
Print contact constraint data	
Print model definition data	
Print history data	
Scratch directory: 🗃	
User subroutine file: 🗃	
c:\temp\DISPSUB.f	
Results Format	
ODB O SIM O Both	
	XO
OK	Cancel

3-1- Subroutine's interface

- The interface refers to the overall structure of a subroutine, in which our code needs to be written.
- The interface consists of a heading that includes the parameters required for the subroutine.
- The interface of the VUMAT subroutine is shown in the figure below.

) +1 (740) 966-1814

support@CAEassistant.comm

```
subroutine vumat(
     C Read only (unmodifiable)variables -
         1 nblock, ndir, nshr, nstatev, nfieldv, nprops, jInfoArray,
         2 stepTime, totalTime, dtArray, cmname, coordMp, charLength,
         3 props, density, strainInc, relSpinInc,
         4
            tempOld, stretchOld, defgradOld, fieldOld,
         5 stressOld, stateOld, enerInternOld, enerInelasOld,
         6 tempNew, stretchNew, defgradNew, fieldNew,
     C Write only (modifiable) variables -
         7 stressNew, stateNew, enerInternNew, enerInelasNew )
    С
          include 'vaba_param.inc'
          parameter (i_info_AnnealFlag = 1,
               i_info_Intpt = 2, ! Integration station number
               i_info_layer = 3, ! Layer number
               i_info_kspt = 4, ! Section point number in current layer
               i_info_effModDefn = 5, ! =1 if Bulk/ShearMod need to be defined
                                       = 6) ! Start loc of user element number
                i_info_ElemNumStartLoc
    С
          dimension props(nprops), density(nblock), coordMp(nblock,*),
         1 charLength(nblock), dtArray(2*(nblock)+1), strainInc(nblock,ndir+nshr),
         2 relSpinInc(nblock,nshr), tempOld(nblock),
         3 stretch0ld(nblock,ndir+nshr),
         4 defgradOld(nblock,ndir+nshr+nshr),
5 +ielaula(nblock,n+ielav), stressula(nblock,nair+nsnr),
            stateOld(nblock,nstatev), enerInternOld(nblock),
          6
             enerInelasOld(nblock), tempNew(nblock),
            stretchNew(nblock,ndir+nshr),
          8
            defgradNew(nblock,ndir+nshr+nshr),
          8
            fieldNew(nblock,nfieldv),
          9
             stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev),
                                                                                                  Header
            enerInternNew(nblock), enerInelasNew(nblock), jInfoArray(*)
          2
    С
           character*80 cmname
    С
           pointer (ptrjElemNum, jElemNum)
           dimension jElemNum(nblock)
    С
           lAnneal = jInfoArray(i_info_AnnealFlag)
           iLayer = jInfoArray(i_info_layer)
           kspt = jInfoArray(i_info_kspt)
           intPt = jInfoArray(i_info_Intpt)
           iUpdateEffMod = jInfoArray(i_info_effModDefn)
           iElemNumStartLoc = jInfoArray(i_info_ElemNumStartLoc)
           ptrjElemNum = loc(jInfoArray(iElemNumStartLoc))
46
           do 100 km = 1, nblock
             user coding
                                                                                          User code
      100 continue
          return
          end
                                                                                       Ending section
```

CAEassistant.com

) +1 (740) 966-1814

support@CAEassistant.comm

You can simply copy the header from the Abaqus documentation and paste it into your file.

1	subroutine vumat(
2	C Read only (unmodifiable)variables -	
3	1 nblock, ndir, nshr, nstatev, nfieldv, nprops, jInfoArray,	
4	2 stepTime, totalTime, dtArray, cmname, coordMp, charLength,	
5	3 props, density, strainInc, relSpinInc,	
6	4 tempOld, stretchOld, defgradOld, fieldOld,	
7	5 stressOld. stateOld. enerInternOld. enerInelasOld.	
8	6 tempNew, stretchNew, defgradNew, fieldNew,	
9	C Write only (modifiable) variables -	
10	7 stressNew, stateNew, enerInternNew, enerInelasNew)	
11	c i i i i i i i	
12	include 'vaba param.inc'	
13	parameter (i info AnnealFlag = 1.	
14	* i_info_Intpt = 2. ! Integration station number	
15	* i info laver = 3. Laver number	
16	* i_info_kspt = 4, ! Section point number in current layer	
17	* i info effModDefn = 5. ! =1 if Bulk/ShearMod need to be defined	
18	* i info ElemNumStartLoc = 6) ! Start loc of user element number	
19	c	
20	dimension props(nprops), density(nblock), coordMp(nblock,*),	
21	<pre>1 charLength(nblock), dtArray(2*(nblock)+1), strainInc(nblock,ndir+nshr),</pre>	
22	2 relSpinInc(nblock,nshr), tempOld(nblock),	
23	3 stretchOld(nblock,ndir+nshr),	
24	4 defgrad0ld(nblock,ndir+nshr+nshr),	
25	5 +ieldUld(nblock,n+ieldv), stressUld(nblock,ndir+nshr),	
26	6	
27	<pre>7 enerInelasOld(nblock), tempNew(nblock),</pre>	
28	8 stretchNew(nblock,ndir+nshr),	
29	8 defgradNew(nblock,ndir+nshr+nshr),	
30	9 fieldNew(nblock,nfieldv),	
31	<pre>1 stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev),</pre>	
32	<pre>2 enerInternNew(nblock), enerInelasNew(nblock), jInfoArray(*)</pre>	
33	c	
34	character*80 cmname	
35	c	
36	pointer (ptrjElemNum, jElemNum)	
37	dimension jElemNum(nblock)	
38	c	
39	lAnneal = jInfoArray(i_info_AnnealFlag)	
40	iLayer = jInfoArray(i_info_layer)	
41	kspt = jInfoArray(i_info_kspt)	
42	intPt = jInfoArray(i_info_Intpt)	
43	iUpdateEffMod = jInfoArray(i_info_effModDefn)	
44	iElemNumStartLoc = jInfoArrav(i info ElemNumStartLoc)	
45	<pre>ptriElemNum = loc(iInfoArrav(iElemNumStartLoc))</pre>	
NIC I		

Some of the header's parameters must be defined in the user code, while others are provided for informational purposes. We will discuss the parameters that you need to define, in following.

- support@CAEassistant.comm
- Carrer de Jaume II ,46015,Valencia ,Spain

3-1-1- VARIABLES TO BE DEFINED

A list of the variables that you must update in the code, is provided in the table below.

Variable		Definition	
stressNew	In all situations	Stress tensor at each material point	
stateNew	In all situations (state variables are used)	Stress tensor at each material point	

According to the table, the first parameter to define in the VUMAT subroutine is stressNew. Here, stressNew represents the stress components at the end of increment, that you need to define in the subroutine to be send to Abaqus.

Interestingly, this subroutine includes a parameter called stressOld, which represents the stress value at the beginning of the increment and is provided for informational purposes only. This allows us to take its value, add the stress changes from the current increment, and define stressNew, according to the following figure.

$$\left(\begin{matrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{matrix}\right)$$

stateNew represents the state variables defined by the user, which must be explicitly specified for the subroutine to recognize them. To do this, you need to define the number of state variables in the material properties section within Abaqus, as shown in the figure below.

- support@CAEassistant.comm
 - Carrer de Jaume II ,46015,Valencia ,Spain

💠 Edit Material			×	
Name: Material-1				
Description:			ø	
Material Behaviors				
Depvar				
<u>G</u> eneral <u>M</u> echani	cal <u>I</u> hermal <u>E</u> lectrical/Magneti	ic <u>O</u> ther		
Depvar				
Number of solution	-dependent 10 💌			
state variables:				

It is important to note that you only need to update this variable if it is required for your implementation and has been defined in the software. Otherwise, updating it is unnecessary.

3-1-2- DIMENSIONS OF STRESSNEW AND STATENEW IN VUMAT SUBROUTINE

UMAT subroutine automatically iterates through all material points, so you don't need to define a loop. However, in the VUMAT subroutine, you must explicitly create a loop over the material points and update the stress components within it. The coding pattern for this process is illustrated in the figure below, and we have provided a more detailed explanation in the workshop section.

> do 100 km = 1,nblock user coding 100 continue

Accordingly, when you want to update stress or statev, you need define them in the following way.

- support@CAEassistant.comm
- Carrer de Jaume II ,46015,Valencia ,Spain

Alternatively, you can define the stress components and state variables in the following way.

As a conclusion, just note that stressNew and stateNew in VUMAT are represented as matrices with dimensions of nblock and ndir + nshr, where nblock is a variable passed in VUMAT for informational purposes, ndir represents the number of direct stress components, and nshr represents the number of shear stress components, respectively.

3-1-3- VARIABLES PASSED IN FOR INFORMATION

The material behavior at any given moment may depend on various parameters such as time, coordinate, current strain or stress.

- support@CAEassistant.comm
- Carrer de Jaume II ,46015,Valencia ,Spain

Accordingly, there are certain variables within the VUMAT that provide you with the necessary information. For example, **strainInc** is a matrix with dimensions of (nblock, ndir + nshr), representing the variation of strain in the current increment.

Another example is stepTime, which represents the current time from the beginning of the step. Many other parameters for verification are included in the VUMAT subroutine, where you can check them and their roles in the Abaqus documentation.

Notice that, When a parameter inside the subroutine is provided only for informational purposes, you cannot assign a value to it, which leads to errors in your code.

© +1 (740) 966-1814

) support@CAEassistant.comm Carrer de Jaume II ,46015,Valencia ,Spain

4- Workshop

In this section, we will conduct a workshop to teach you how to write VUMAT code for various problems and use it effectively.

Workshop 1: Isotropic Isothermal problem

- Isotropic refers to a property of materials or systems that exhibit the same characteristics or behavior in all directions.
- Isothermal refers to a process or condition in which the temperature remains constant.
- The problem characteristics are shown in the next figure.

According to the figure, the beam is fixed in xy plan.

) +1 (740) 966-1814

support@CAEassistant.comm

The generalized Hook's low in Matrix form for such an Isotropic problem is shown in the following figure.

$$\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{23} \\ \varepsilon_{23}$$

In which $\gamma_{ij=2\epsilon_{ij}}$ is defined as the shear engineering strain.

Conversely, the stress in the material can be calculated from the strain using the following equation.

/ N								2
(σ_{11})		$(1-\nu)$	ν	ν	0	0	0)	$\left(\begin{array}{c} \varepsilon_{11} \end{array} \right)$
$\sigma_{ m 22}$		ν	1- <i>v</i>	ν	0	0	0	ε ₂₂
$\sigma_{\rm 33}$	<i>E</i>	ν	ν	1- <i>v</i>	0	0	0	E33
$\sigma_{ m 23}$	$-\frac{1}{(1+\nu)(1-2\nu)}$	0	0	0	(1-2v)/2	0	0	2 ε ₂₃
$\sigma_{ m 31}$		0	0	0	0	(1-2 ν)/2	0	2 ε ₃₁
$\sigma_{ m 12})$		0	0	0	0	0	$(1-2\nu)/2$	(2 <i>ɛ</i> ₁₂)

The above equation can be rewritten in the following form using the Lamé constants.

(σ_{11})		$(2\mu + \lambda)$	λ	λ	0	0	0)	(<i>ε</i> ₁₁)
$\sigma_{ m 22}$		λ	$2\mu + \lambda$	λ	0	0	0	<i>E</i> 22
$\sigma_{\scriptscriptstyle 33}$	_	λ	λ	$2\mu + \lambda$	0	0	0	E33
$\sigma_{ m 23}$	_	0	0	0	μ	0	0	2 ε ₂₃
$\sigma_{ m 31}$		0	0	0	0	μ	0	2 ε ₃₁
σ_{12}		0	0	0	0	0	μ)	2 <i>ε</i> ₁₂

In which λ is the Lamé constant, and μ is the shear modulus, both defined as follows.

- support@CAEassistant.comm
- Carrer de Jaume II ,46015,Valencia ,Spain

$\lambda = \frac{E\nu}{(1-2\nu)(1+\nu)} \qquad \mu = \frac{E}{2(1+\nu)}$

Developing the VUMAT code for this problem is the focus of this workshop.

Before we start writing the VUMAT code, let's take a moment to review the modeling process in Abaqus together. This is illustrated in the next figure.

- 1- According to the figure, first, you need to create 3D deformable part.
- 2- Then you need to go to the property module and define the material properties
- 3- Then you need to define a section and assign it to the specimen.
- 4- Next, you must create an instance of the model in assembly module
- 5- Afterward, create a static general step
- 6- Now, you can apply boundary conditions, including the fixed end and the applied displacement
- 7- Then define the elements
- 8- Next, create a job in the Job module
- 9- Finally, add the fortran subroutine file address to edit job general menu.

) +1 (740) 966-1814

support@CAEassistant.comm

🕓 +1 (740) 966-1814

support@CAEassistant.comm

• Notice that, for the boundary conditions, you need to define two displacement-type boundary conditions at the start and end of the beam, with the details shown in the figure below.

Applied displacement

Fixed end

In addition, since we want the loading to follow a quasi-static form, we need to define a smooth step for the boundary condition, ensuring that at the beginning of the solution, the loading rate is low and gradually increases. The method for applying smooth step loading is shown in figure below.

- support@CAEassistant.comm
- Carrer de Jaume II ,46015,Valencia ,Spain

⇔ Edit Boun	dary Condition		\times	\geq		Hu
Name: Disp	-BC-7			\leq		
Type: Disp	lacement/Rotation			P		
Step: Step	-1 (Dynamic, Explicit)			E	HTT.	
Region: SET-	2 😼					
CSYS: (Glob	pal) 除 🙏					
Distribution:	Uniform	~	f(x)	¢	Edit Amplitude	×
🗆 U1:				Na	me: Amp-1	
🗆 U2:				Тур	be: Smooth step	
✓ U3:	5			Tin	ne span: Step time 🕑	
🗆 UR1:			radians		Time/Frequency	Amplitude
🗆 UR2:			radians	1	0	0
🗆 UR3:			radians	2	200	
Amplitude:	Amp-1	~	₽			
Note: The d will be	isplacement boundar e reapplied in subseq	y cond uent st	lition teps.			
Ok		Cancel			ОК	Cancel

As shown in this figure, we define the amplitude so that the load factor starts at zero at the beginning of the solution and gradually increases to one by the end of the step, which lasts 200 seconds. This factor is then multiplied by the defined displacement value of 5.

- support@CAEassistant.comm
- Carrer de Jaume II ,46015,Valencia ,Spain

Let's see how the VUMAT code is written for such a problem.

As shown in the next figure, we first copied the subroutine header from the Abaqus documentation and pasted it into the Fortran code.

Then, we defined several parameters in the real(8) format, including the modulus of elasticity, Poisson's ratio, a coefficient for the shear modulus, as well as the values for zero, one, and two.

) +1 (740) 966-1814

support@CAEassistant.comm

```
subroutine vumat(
    C Read only (unmodifiable)variables -
         1 nblock, ndir, nshr, nstatev, nfieldv, nprops, jInfoArray,
         2 stepTime, totalTime, dtArray, cmname, coordMp, charLength,
         3 props, density, strainInc, relSpinInc,
         4 tempOld, stretchOld, defgradOld, fieldOld,
           stressOld, stateOld, enerInternOld, enerInelasOld,
         5
         6 tempNew, stretchNew, defgradNew, fieldNew,
    C Write only (modifiable) variables
         7 stressNew, stateNew, enerInternNew, enerInelasNew)
12
          include 'vaba_param.inc'
          parameter (i_info_AnnealFlag = 1,
13
                             = 2, ! Integration station number
               i_info_Intpt
               i_info_layer = 3, ! Layer number
               i_info_kspt = 4, ! Section point number in current layer
               i_info_effModDefn = 5, ! =1 if Bulk/ShearMod need to be defined
         *
               i_info_ElemNumStartLoc = 6) ! Start loc of user element number
         *
          dimension props(nprops), density(nblock), coordMp(nblock,*),
         1 charLength(nblock), dtArray(2*(nblock)+1), strainInc(nblock,ndir+nshr
         2 relSpinInc(nblock,nshr), tempOld(nblock),
            stretch0ld(nblock,ndir+nshr),
         3
         4
            defgradOld(nblock,ndir+nshr+nshr),
            field0ld(nblock,nfieldv), stress0ld(nblock,ndir+nshr),
         5
            stateOld(nblock,nstatev), enerInternOld(nblock),
         6
            enerInelasOld(nblock), tempNew(nblock),
         7
         8
            stretchNew(nblock,ndir+nshr),
            defgradNew(nblock,ndir+nshr+nshr)
         8
         9
            fieldNew(nblock,nfieldv),
         1
            stressNew(nblock,ndir+nshr) ______stateNew(nblock,nstatev),
         2 enerInternNew(nblock), enerInelasNew(nblock), jInfoArray(*)
          character*80 cmname
          pointer (ptrjElemNum, jElemNum)
          dimension jElemNum(nblock)
          REAL*8 E, Nu, EG2, ELAM, EG
           zero = 0.d0
           one = 1.d0
           two = 2.d0
           third = 1.d0 / 3.d0
          half = 0.5d0
           lAnneal = jInfoArray(i_info_AnnealFlag)
           iLayer = jInfoArray(i_info_layer)
           kspt = jInfoArray(i_info_kspt)
           intPt = jInfoArray(i_info_Intpt)
           iUpdateEffMod = jInfoArray(i_info_effModDefn)
           iElemNumStartLoc = jInfoArray(i_info_ElemNumStartLoc)
           ptrjElemNum = loc(jInfoArray(iElemNumStartLoc))
54
```

) +1 (740) 966-1814

support@CAEassistant.comm

In the next step, we define the physical constants for determining the stiffness matrix (presented in the next figure).

$(2\mu + \lambda)$	λ	λ	0	0	0
λ	$2\mu + \lambda$	λ	0	0	0
2	λ	$2\mu + \lambda$	0	0	0
0	0	0	μ	0	0
0	0	0	0	μ	0
O	0	0	0	0	μ)

Notice that, as shown below, we stored the values of the Young's modulus and Poisson's ratio as mechanical constants. Whenever we need these values, we can call them using props(1) and props(2), respectively.

💠 Edit Material 🛛 🕹 🕹
Name: STEEL
Description:
Material Behaviors
User Material
General Mechanical Inermal Electrical/Magnetic Other
User Material
User material type: Mechanical
Hybrid formulation: O Use default O Specify: Incremental
Use unsymmetric material stiffness matrix
UVUMAT defines effective modulus
Data
Mechanical
1 210000
2 0.3
OK

• In the next figure, E is the Young's modulus, and NU is the Poisson's ratio.

-) +1 (740) 966-1814
- support@CAEassistant.comm
 - Carrer de Jaume II ,46015,Valencia ,Spain

- EG2 is the shear modulus multiplied by 2.
- ELAM is the Lamé constant.

Now, it's time to calculate the stress. Using the formula below, we calculated the stress components within a for loop.

- support@CAEassistant.comm
 - Carrer de Jaume II ,46015,Valencia ,Spain

Finally, as shown in the figure below, the subroutine concludes and returns the values to Abaqus.

🕒 +1 (740) 966-1814

support@CAEassistant.comm

RESULTS

In this section, we solved the problem once using the VUMAT subroutine and once using Abaqus's built-in material model, with the same properties. The process for defining the materials in Abaqus is illustrated in the figure below.

Name: STEEL
Description:
Material Behaviors
Elastic
<u>G</u> eneral <u>M</u> echanical <u>I</u> hermal <u>E</u> lectrical/Magnetic <u>O</u> ther
Elastic
Type: Isotropic
Use temperature-dependent data
Number of field variables: 0
Moduli time scale (for viscoel <mark>astic</mark> ity): Long-term
No compression
□ No tension
Data
Young's Poisson's
Modulus Ratio
1 210000 0.3

We plotted the Mises stress in the job output. As shown in the figure below, the pattern obtained using Abaqus's material model and the VUMAT subroutine is identical, verifying the accuracy of the VUMAT code.

) +1 (740) 966-1814

support@CAEassistant.comm

We have provided the Abaqus modeling files and Fortran code for this example at <u>this GitHub link</u>.

) +1 (740) 966-1814

support@CAEassistant.comm