Car part industrial simulation

(1 customer review)

 39.0

Car industrial parts are complex and critical components that play a vital role in the operation of a car. Two such parts are the exhaust manifold and the internal combustion engine (IC engine). The exhaust manifold directs hot exhaust gases from the engine’s cylinders into the exhaust system and is typically made of cast iron or stainless steel. The IC engine converts fuel into mechanical energy by burning fuel in a controlled explosion within the engine cylinder. High temperatures and pressures must be considered in the design, and the components must be made of durable materials that can withstand the stresses of constant combustion. Therefore, it is important to know how these parts respond under different loading conditions to have the best design possible. In this package, there are two workshops to help you with this job: Heat transfer analysis in an exhaust manifold and Thermomechanical analysis of an exhaust manifold.

 

Expert

Included

.inps,video files, Fortran files (if available), Flowchart file (if available), Python files (if available), Pdf files (if available)

Tutorial video duration

36 minutes

language

English

Level

Package Type

Software version

Applicable to all versions

Add-on

The option's price will be set post-order, requiring negotiation with support for confirmation.

The option's price will be set post-order, requiring negotiation with support for confirmation.
Product price:  39.0
Total options:
Order total:
35 People watching this product now!
Description

Simulation of car industrial parts in Abaqus

Car industrial parts are complex and critical components that play a vital role in the operation of a car. Two such parts are the exhaust manifold and the internal combustion engine (IC engine). The exhaust manifold is responsible for collecting and directing hot exhaust gases from the engine’s cylinders into the exhaust system. It is typically made of cast iron or stainless steel and must be able to withstand high temperatures and pressures. The IC engine is responsible for converting fuel into mechanical energy to power the car. It does this by burning fuel in a series of controlled explosions within the engine cylinder.

Simulation of car industrial parts in Abaqus

Using Abaqus, simulations can be performed to assess the performance of critical car industrial parts such as the exhaust manifold and internal combustion engine (IC engine). The simulations consider the materials used, high temperatures, and pressures that these parts must withstand, and the stresses that result from constant combustion. Abaqus provides a range of material models and numerical techniques to accurately simulate the behavior of these parts under various loading conditions. Through a combination of thermal and stress analyses, Abaqus can identify areas of potential failure and provide insight into the design and maintenance of these parts to ensure proper functioning and longevity in a car. The two workshops below help you to simulate and analyze car industrial parts such as an exhaust manifold.

Workshop 1 : Heat transfer analysis in an exhaust manifold

Three processes control heat transfer in engine exhaust manifolds: conduction through the metal, convection from the hot exhaust gases, and radiative exchange between various metal surface areas. This example shows how to calculate a manifold’s equilibrium thermal state under these effects. The process consists of a single heat transfer step in which the conditions for thermal loading are scaled up from zero. The temperatures at the cylinder head and outlet are fixed, therefore the boundary constraints on the manifold flanges are a simplification of those encountered under operational conditions. The interior surfaces of the manifold tubes experience convection as a result of heat transfer from the hot exhaust. The cavity radiation approach, with and without cavity parallel decomposition enabled, and using average-temperature radiation conditions are all used to describe the radiation between the internal surfaces of the tubes. Gray iron was used to cast the manifold. When employing the cavity radiation technique, the peak temperature in the field is higher. High-temperature zones radiate more heat, which is absorbed by the cooler parts, resulting in a smoothing of the temperature field in the equilibrium solution. This smoothing effect in the cavity radiation method is constrained and influenced by geometric view factors: the size and orientation of the surface facets influence the amount of radiation exchange that can take place. When employing radiation conditions with average temperature, this is not the case. Only a facet’s temperature and the average cavity temperature are taken into account when determining whether it will absorb or emit radiation; view factors’ localizing effects are not taken into account. Since the radiation model utilized had a stronger smoothing impact, the average method findings show lower peak values.

Workshop 2: Structural and thermal analysis of exhaust manifold

This tutorial has looked at the Thermal and Structural Analysis of the Exhaust Manifold in Abaqus. Because the geometry of the manifold is intricate, SolidWorks is used to import it into Abaqus.

The exhaust manifold, which is mounted on the cylinder of an internal combustion engine, is a crucial part of an engine in the world of automobiles. For a smooth exhaust, the gases entering from the cylinder head at various exhaust strokes are collected with the least amount of backpressure. Gases from other strokes must smoothly discharge after those arriving from one cylinder at a given stroke. Gases were delivered into a common pipe from various pipes before going into the muffler. The design of the manifold and effective emission of combustion products are crucial factors that determine the performance of an internal combustion engine. When the engine cylinder expels exhaust gases, they have a high temperature and pressure, ranging from 800°C and 100kPa to 500kPa, respectively. The surface of the manifold experiences a lower temperature, typically between 250°C and 300°C. Due to these temperature gradients, the manifold exerts a thermal load on the material, causing it to move from its mounted position with the cylinder head. This thermal load, when combined with the structural load from bolt pretension, results in stresses on both the manifold and bolt materials. It is important to ensure that these stresses are within safe limits for proper design. Therefore, a thermo-mechanical analysis should be performed during the initial stages of design to assess the potential stresses and ensure safe operation. To ensure proper performance of the manifold, it is important to select material data that are suitable for the expected temperature range. The simulation process for assessing the manifold has two main sections: thermal analysis and stress analysis. During the thermal analysis, Abaqus calculates the temperature using a thermal step, and then applies that temperature to consider thermal stress during a subsequent static step. To ensure accuracy, the simulation assigns convection and radiation properties to the internal surfaces and carefully considers the appropriate boundary conditions for both sections. A fine mesh is critical for obtaining accurate results. Once the simulation is complete, the results of both the thermal and stress analyses are available for review.

It would be useful to see Abaqus Documentation to understand how it would be hard to start an Abaqus simulation without any Abaqus tutorial.

 

  • Introduction and problem description
  • Description of modeling steps
  • Result and discussion
  • Introduction and problem description
  • Description of modeling steps
  • Result and discussion
Shipping and Delivery

All the package includes Quality assurance of training packages. According to this guarantee, you will be given another package if you are not satisfied with the training, or your money is returned. Get more information in terms and conditions of the CAE Assistant.
All packages include lifelong support, 24/7 support, and updates will always be sent to you when the package is updated with a one-time purchase. Get more information in terms and conditions of the CAE Assistant.

Notice: If you have any question or problem you can contact us.
Ways to contact us: WhatsApp/Online Support/Support@CAEassistant.com/ contact form.
Projects: Need help with your project? You can get free consultation from us here.

  • Online payment: with MasterCard, VisaCard and etc.
  • Offline payment: In this payment method, you should pay via PayPal and send your payment receipt as an attached file in the offline payment form.
  • via download link After purchase, a download link will be sent to you a zip file included training videos, documents and software files.
  • Send us your machine ID

To access tutorial video run the .exe file on your personal pc and send the generated code to shop@caeassistat.com and wait for your personal code, which is usable only for that pc, up to 24 hours from CAE Assistant support.

Here you can see the purchase process of packages: Track Order

Features

Abaqus tutorial video
Lecture notes
Abaqus workshop files
Contains all required files
Certification
Works for all Abaqus versions
Safe payment
money-back guarantee
Free 24/7 online mentoring
Access for life
updated content
Time-Saving Short But Full
Premium Corporate and Academic Clients
Prepared by High-Level Researchers
Fortran Abaqus subroutines
All payment method

1 review for Car part industrial simulation

  1. Avatar of Brittany

    Brittany

    I would like to express my appreciation to CAE Assistant for providing this instructional package for simulating industrial car parts in Abaqus. These tutorials and examples are extremely valuable and enable users to improve the performance of thermal and structural components in automotive applications using various techniques and models in Abaqus.

    • Avatar of Experts Of CAE Assistant Group

      Experts Of CAE Assistant Group

      Thanks for your kind review!

Add a review
SKU: Ka011 Category: Tags: ,