FREE ABAQUS TUTORIAL VIDEOS

Free Abaqus Course | 10 hours Video | +1000 Students | ️ Lifetime Access


FREE ABAQUS TUTORIAL PDF

What are our advantages?

How will Advanced Engineering Courses help me?

While working with ABAQUS, users might run into difficulties while defining the material properties, loading or meshing, interaction properties, and etc. If you are a graduate or Ph.D. student, a university professor or an expert engineer in the industry, using simulation software, our packages will help you simulate more professionally. Advanced engineering courses produced by CAE assistant will help you write your code easily in many engineering software.

How can we learn to write an Abaqus subroutine correctly?

Here below, I have listed some main subroutines that you may encounter when using Abaqus CAE at an advanced level as a graduate student or researcher. Good news for you! You can learn each subroutine you want by clicking on that.

UMAT Subroutine Video packageIntroduction to UEL SUBROUTINE in ABAQUSUVARM subroutine (VUVARM subroutine) in ABAQUS-packageUMESHMOTION Subroutine in ABAQUS-packageDFLUX subroutine in ABAQUS-packageUSDFLD AND VUSDFLD SUBROUTINES in ABAQUSUHARD Subroutine (UHARD Subroutine) in ABAQUS-packageUAMP subroutine (VUAMP Subroutine)in ABAQUS-packageIntroduction to VFRICTION and VFRIC Subroutines in ABAQUSUHYPER Subroutine in ABAQUSDISP AND VDISP SUBROUTINES in ABAQUSUEXPAN and VUEXPAN SUBROUTINEDLOAD subroutine

CAE ASSISTANT

Get to know us with numbers

10000
Time Duration(Min)
120
Packages
600
Videos
80000
Subscriber

Abaqus for beginners (Abaqus tutorial for civil engineering)

 270.0
(12)
In the present Abaqus tutorial for civil engineering package, we have presented all the software skills that a civil engineer needs when he wants to use his/her engineering knowledge in computer-aided designing. Abaqus tutorial for civil engineering covers all you need to simulate concrete, reinforcements, buckling, frequency, damage, composite, cohesive and more topics. You can download the syllabus of this package here.  

Additive Manufacturing or 3D Printing Abaqus simulation

 440.0
(11)
3D printing is a process of creating three-dimensional objects by layering materials, such as plastic or metal, based on a digital design. 3D printing simulation involves using software to predict and optimize the printing process, allowing for more efficient and accurate production. This educational package includes two 3D printing modeling methods. The first method is based on the use of subroutines and Python scripting. After an introduction to the 3D printing process, the first method with all of its detail is explained; then, there would be two workshops for this method; the first workshop is for the 3D printing simulation of a gear with uniform cross-section and the second one is for a shaft with non-uniform cross-section. The second method uses a plug-in called AM Modeler. With this plug-in, the type of 3D printing can be selected, and after inserting the required inputs and applying some settings, the 3D printing simulation is done without any need for coding. Two main workshops will be taught to learn how to use this plug-in: "Sequential thermomechanical analysis of simple cube one-direction with LPBF 3D printing method using the trajectory-based method with AM plug-in" and "3D printing simulation with Fusion deposition modeling and Laser direct energy deposition method with AM plug-in".

Welding Simulation in ABAQUS

 230.0
(11)
This training package fully covers the various possible methods for welding simulation. First, an introduction to welding and two basic categories of welding, fusion and non-fusion welding. Next, the theories and the elements used to simulate the welding will be explained. These theories are Lagrangian, Eulerian, ALE, and SPH. After that, you will learn how to apply these theories with different methods, such as the death and birth of an element, DFLUX subroutine, etc. Finally, you will learn how to simulate welding with the help of five workshops: Friction Stir Welding (FSW) simulation with the Eulerian element, Explosive welding simulation, simulation of FSW with the SPH method, Butt welding with death and birth of an element method, and Simulation of Arc welding between two tubes with DFLUX subroutine (Thermomechanical Analysis).

ABAQUS course for beginners | FEM simulation tutorial

 256.0
(13)
In this Abaqus course for beginners, which is designed for FEM Simulation students in mechanical engineering, various examples in the most widely used fields are presented. These examples are provided with the necessary points and theories for simulation. With this training package, you will be able to get acquainted with different ABAQUS modules in the form of various examples in modeling, how to get the output and the necessary results for reporting. You can download the syllabus of this package here. Watch Demo

Composite Fatigue Simulation with UMAT Subroutine in ABAQUS (unidirectional)

 420.0
(4)
The composite fatigue training package completely teaches how to simulate and analyze a fatigue composite model with the help of UMAT Subroutine in Abaqus software. In this training package, we have provided all the files needed for your training, including articles, theories, how to write subroutines, and software settings.

3D continuum Abaqus HASHIN progressive Damage for composite materials (VUMAT Subroutine)

 320.0
(10)
This tutorial teaches how to simulate damage in 3d continuum composite materials in ABAQUS. As you know, Abaqus does not have any material model for 3d composite materials. So, the user needs to write a customized subroutine to simulate damage initiation and progressive damage for composite materials in ABAQUS. In this package, one of the most practical damage initiation criteria (Hashin) is used to detect failure. It should be mentioned that this subroutine includes gradual progressive damage based on the energy method. This complex subroutine could be used for static and dynamic problems.

Bolt Modeling in Abaqus

 109.0
Bolts and joints play a vital role in the stability and structural integrity of various engineering structures, including buildings, bridges, and machines. Bolts are used to fasten or connect different components together, providing a means of transferring loads and ensuring the continuity of load paths. Joints connect structural elements, allowing them to move and deform while maintaining their overall stability. Proper design and selection of bolts and joints are crucial to ensuring the safety and durability of the structure. Factors such as the type of load, the materials used, and the environmental conditions must be considered when selecting bolts and joints. Failure to properly design and install bolts and joints can result in catastrophic failure of the structure. In this package, you will learn how to model bolts and joints, simulating the failure of connections and other things with practical examples.
 

Car part industrial simulation

 49.0
Notice: This package will be available one week after purchase. Car industrial parts are complex and critical components that play a vital role in the operation of a car. Two such parts are the exhaust manifold and the internal combustion engine (IC engine). The exhaust manifold directs hot exhaust gases from the engine's cylinders into the exhaust system and is typically made of cast iron or stainless steel. The IC engine converts fuel into mechanical energy by burning fuel in a controlled explosion within the engine cylinder. High temperatures and pressures must be considered in the design, and the components must be made of durable materials that can withstand the stresses of constant combustion. Therefore, it is important to know how these parts respond under different loading conditions to have the best design possible. In this package, there are two workshops to help you with this job: Heat transfer analysis in an exhaust manifold and Thermomechanical analysis of an exhaust manifold.
 

Rock simulation in Abaqus

 49.0
Notice: This package will be available one week after purchase. Rock simulation is essential for evaluating the behaviour of rock masses under various loading conditions, such as earthquakes, landslides, and blasting. It enables engineers and geologists to assess the stability and integrity of rock structures, predicts potential failure modes, and develop effective mitigation strategies. Rock simulation is crucial in the design and planning of mining operations, tunnels, and underground constructions to ensure the safety and longevity of the structures. It also plays a vital role in assessing the seismic hazard of an area and evaluating the potential impact of earthquakes on the built environment. In this package, you will learn how to do an impact simulation on a granite stone using the JH-2 model; also an explosion simulation inside a rock for excavation purposes. You can learn more detail in the description of the workshops.
 

Piezoelectric simulation in Abaqus

 29.0
Piezoelectric materials are unique materials that generate an electric charge in response to applied mechanical stress, such as pressure or vibration. They are used in a wide range of applications, including sensors, actuators, and energy harvesting devices. The piezoelectric analysis is the process of studying the mechanical and electrical behavior of piezoelectric materials under various loading conditions. It involves modeling and simulating the response of piezoelectric materials to external stimuli, such as electrical potential or mechanical stress. The importance of piezoelectric analysis lies in its ability to evaluate the performance and optimize the design of piezoelectric devices, which are becoming increasingly important in various industries, including medical, automotive, aerospace, and energy. Piezoelectric analysis can help improve the efficiency, accuracy, and durability of piezoelectric devices, leading to advancements in technology and innovation. In this package you will learn how to model piezoelectric materials in Abaqus.

Fire analysis in Abaqus

 49.0
Notice: This package will be available one week after purchase. The aim of fire analysis is to evaluate the performance of structures in real fire scenarios and to develop strategies to improve their fire resistance and safety. Fire analysis is commonly used in the design and evaluation of buildings, bridges, and other structures. Fire analysis is the process of simulating the behavior of structures under fire conditions. Fire analysis typically involves two main steps: (i) heat transfer analysis to estimate the propagation of heat in the structure and (ii) structural analysis taking into account the effects of heat and mechanical loads. In this package, you will learn how to do a fire simulation on some structures and parts like concrete beams. You can find more details about how to do this simulation in the description of the workshops.

Tunnel simulation in Abaqus

 49.0
Notice: This package will be available one week after purchase. A tunnel is an underground or underwater passage for transportation, utility lines, or water pipelines. Tunnels are critical infrastructure, and their safety and reliability are essential for ensuring public safety and the smooth functioning of society. Tunnel simulation involves using computer models to predict the behaviour of tunnels under different types of loading conditions, such as earthquakes, floods, or explosions. These simulations can help engineers and policymakers assess the safety and reliability of tunnels, identify potential failure modes, and develop strategies to mitigate risks. By using advanced simulation techniques, engineers can better understand the complex behavior of tunnels and design more effective and durable structures. Tunnel simulation is an essential tool for ensuring the safety and resilience of tunnels and the infrastructure they support. Some workshops are presented in this package to teach you how to simulate and analyze tunnels in Abaqus; two of these workshops are Damage analysis of an underground box tunnel subjected to surface explosion and Tunnel dynamic analysis subjected to internal blast loading using CEL method.
Companies/ Institutes/Universities

Our Costumers

They have trusted us

About Abaqus CAE and abaqus course

Abaqus CAE is a collection of advanced engineering simulation programs that use the finite element method to solve a wide range of problems, from simple linear analysis to complex nonlinear simulations. Abaqus software provides an extensive library of elements that can be used to model various types of geometries, as well as a broad range of material models that can simulate the behavior of most common engineering materials, including metals, rubber, polymers, composites, reinforced concrete, crushable and resilient foams, and geotechnical materials such as soils and rock. Although this software was primarily designed as a general-purpose simulation tool for structural (stress/displacement) problems, it can also be used to study other areas such as heat transfer, mass diffusion, thermal management of electrical components (coupled thermal-electrical analyses), acoustics, soil mechanics (coupled pore fluid-stress analyses), and piezoelectric analysis. Here on this page, you can access a wide range of Abaqus tutorial videos. in addition, In our ABAQUS tutorial PDFs, you can find an overview of the ABAQUS software, an introduction to the finite element method, and topics such as forming. You can access any desired ABAQUS tutorial PDFs by simply clicking on them.

Read More

ABAQUS TUTORIAL

Download the best resources on Abaqus tutorial !

Abaqus tutorial | Abaqus course on CAEassistant

It is a software program used for pre-processing (modeling and analyzing mechanical parts and assemblies) and viewing finite element analysis results. If you are new to the software, our “free Abaqus tutorial” improves your basic knowledge of Abaqus. “Abaqus course for beginners” is the best Abaqus training on the web. Here you can find some Abaqus tutorial PDFs that include practical examples of software and useful description of how to model them. In the free video tutorial packages or Abaqus student tutorials, just some parts of the Abaqus training packages are presented. If you are interested, you can find complete packages on the CAEassistant shop.

Read More

Abaqus Modules Video Tutorial

A full Abaqus environment, Abaqus/CAE offers a straightforward, consistent user interface for creating, submitting, tracking, and assessing the results of Abaqus/Standard and Abaqus/Explicit simulations. Each module in Abaqus/CAE defines a logical step in the modeling process, such as specifying the geometry, defining the properties of the materials, and creating a mesh. Building the model used by Abaqus/CAE to produce the input file you give to the Abaqus/Standard or Abaqus/Explicit analysis product happens as you progress through the modules. The analysis tool performs the analysis, provides data to Abaqus/CAE so you can keep track of the job’s development, and creates an output database. Here, in the below Abaqus training videos, you can get enough information about the modules and start simulating in this software. These Abaqus student tutorials have been provided in a way that, after watching them, you can gain insight into analyzing your project. Enjoy this Abaqus tutorial and get the full version of the “Abaqus course for beginners” package.

✅ Subscribed students +80,000
✅ Upcoming courses +300
✅ Tutorial hours +300
✅ Tutorial packages +100