Showing all 19 results

Analysis of Plain and Reinforced Concrete Structures with ABAQUS | Validation with Experiments

 120.0

This comprehensive package offers four different workshops focused on the analysis of plain and fiber-reinforced concrete structures using ABAQUS. Designed for professionals, researchers, and students, it provides hands-on learning in modeling, simulating, and validating concrete structures under various conditions. Each workshop dives into specific aspects of concrete behavior, from flexural to compressive strength, incorporating the latest sustainable practices through the use of recycled materials. The package ensures mastery of ABAQUS, offering practical insights and a cost-effective path to advanced concrete analysis and safer, more durable infrastructure design.

Stress-strain characteristic of SFRC using recycled fibres | An Abaqus Simulation

 40.0

This training utilizes Abaqus software to simulate and analyze the stress-strain characteristics of Steel Fiber Reinforced Concrete (SFRC) using recycled fibers. The importance of this work lies in its contribution to sustainable construction practices by validating the effectiveness of recycled steel fibers in enhancing concrete's mechanical properties. Through advanced finite element analysis (FEA), the project addresses challenges in accurately modeling SFRC's post-cracking behavior, ensuring that the simulations are aligned with experimental data for reliable results. Abaqus' capabilities in nonlinear material modeling, stress-strain simulation, and principal stress analysis significantly improve the accuracy and reliability of the research, making it a valuable tool for both academia and industry.

Nonlinear Analysis of RC Columns Using ABAQUS | Validation with Experimental Data

 40.0

Reinforced Concrete (RC) columns are critical components in civil engineering, essential for the stability of buildings, bridges, and infrastructure during seismic events. This study leverages ABAQUS, a powerful finite element analysis (FEA) software, to simulate the seismic performance of RC columns. By modeling columns in 3D and using ABAQUS's advanced tools, we replicate experimental conditions to analyze their behavior under seismic loads. Numerical simulations offer the advantage of exploring various scenarios quickly and cost-effectively, while also allowing for extensive parametric studies. The study details how ABAQUS models both concrete and steel reinforcement, accounts for interaction effects, and applies appropriate loading and boundary conditions. The simulations provide valuable insights into failure modes, load-displacement responses, and crack patterns, offering a comprehensive understanding of RC column performance in seismic scenarios.

Analysis of Steel-Fiber Reinforced Concrete (SFRC) Beams with Abaqus

 40.0
Steel-Fiber Reinforced Concrete (SFRC) is an innovative composite material that enhances the structural integrity of traditional concrete by incorporating steel fibers, which improve toughness and ductility. This makes SFRC particularly valuable in earthquake-prone regions, where its ability to resist cracking and absorb energy is critical. The analysis of SFRC beams, through both experimental and numerical methods like finite element analysis (FEA) in Abaqus, provides insights into their behavior under seismic loads, highlighting benefits like enhanced energy dissipation and ductility. Such analysis is essential for designing resilient structures, offering significant advantages to engineers, construction companies, researchers, and policymakers.

Machine Learning for Composite Materials with Abaqus

 340.0

This tutorial package delves into an advanced inverse modeling approach for predicting carbon fiber properties in composite materials using a machine learning (ML) technique. Specifically, it covers the use of Gaussian Process Regression (GPR) to build a surrogate model for accurate predictions of fiber properties based on data from unidirectional (UD) lamina. By leveraging Finite Element (FE) homogenization, synthetic data is generated for training the GPR model, accounting for variations in fiber, matrix properties, and volume fractions. This framework’s efficiency and accuracy are validated using real-world data, highlighting its potential as a computational alternative to traditional experimental methods. The package includes detailed explanations, case studies, and practical exercises, equipping users with hands-on experience in applying this ML-based approach to composite material analysis.

Fiber Reinforced Concrete Beams | An Abaqus Simulation

 30.0
Fiber Reinforced Concrete (FRC) incorporates fibers into the concrete matrix to enhance its mechanical properties. For example, we can refer to tensile strength, toughness, and impact resistance. This innovation reduces concrete’s inherent brittleness, making it more ductile and capable of withstanding higher stresses without failure. FRC’s ability to bridge cracks and improve durability makes it ideal for demanding structural applications, including industrial floors, pavements, bridge decks, and airport runways. Accurate analysis of FRC beams, particularly their flexural behavior, is crucial for predicting performance under real-world conditions. We use Abaqus, a powerful finite element analysis software, to simulate and analyze these beams. It provides insights into how fiber content, concrete strength, and reinforcement ratios affect structural performance. These simulations provide valuable data for engineers, researchers, and students, aiding in the design and optimization of FRC structures.  

Analysis of Cold-Rolled Aluminium Alloy Channel Columns With Abaqus CAE

 110.0
Cold-rolled aluminium alloy channel sections are manufactured using a cold-rolling method that is faster and less energy-intensive than traditional methods. It reduces labor, material costs, and construction time. These sections are ideal for green and sustainable buildings due to their recyclability, lightweight nature, and corrosion resistance, making them suitable for various structural applications. This project guides you in using Abaqus for numerical analysis of cold-rolled aluminium alloy channel columns to ensure their safety and performance under various loads. This enables you to achieve accurate designs for these members, preventing structural failures, inefficiencies, and increased costs.

Seismic Analysis in Post-Tensioned Concrete Gravity Dam Design Using Abaqus Subroutines

 190.0
This project investigates the seismic analysis of post-tensioned concrete gravity dams. To achieve this, we utilized ABAQUS CAE with the UEL (User Element) subroutine. The project enhances the simulation of complex structural interactions, including inclined anchors and weak joints, which are crucial elements in concrete gravity dam design. Specifically, it provides a detailed comparison between transient and pseudo-static analysis results. This comparison is essential for understanding how the dynamic responses and structural behavior of these dams under seismic conditions can be effectively modeled and validated within the broader scope of concrete gravity dam design. Moreover, the project offers insights into potential debonding issues and their impact on post-tensioning forces, which are critical considerations in concrete gravity dam design. This research benefits civil engineers and academics by advancing the methodologies used for designing and analyzing the resilience of gravity dams, particularly in earthquake-prone regions.

Advanced Finite Element Analysis of Off-Axis Tunnel Cracking Laminates

 0.0
(5)
The project investigates off-axis oriented tunnel cracking laminates. It focuses on cracks growing at an angle to the primary fiber direction in layered laminates. By examining factors such as ply thickness, crack spacing, and material properties, the study analyzes how these elements influence the energy release rate and mode mix during crack propagation. The project employs Abaqus CAE, along with UEL and UMAT subroutines, to model and analyze these cracks. It offers comprehensive insights into crack growth mechanics under various loading conditions. Moreover, a Python script is used to automate the entire simulation process. It handles tasks such as geometry creation, defining model properties, setting boundary conditions, generating and modifying input files, and post-processing. So, it enables us to calculate crack profiles and energy release rates. The project benefits researchers, engineers, academics, and industry practitioners by providing valuable methodologies and insights into the behavior of composite materials.

Bolting Steel to Concrete in Composite Beams: ABAQUS Simulation Validated Against Experiments

 140.0
Composite beams with welded stud shear connectors pose challenges in terms of disassembly and reuse, which impacts their sustainability. By bolting steel to concrete, we can aquire a more sustainable alternative, facilitating easier disassembly and reuse. Engineers value concrete-steel bolted shear connections for their fatigue resistance, secure connections, and ease of disassembly. These factors make them suitable for various applications. Proper design is crucial for these connections to ensure effective shear force transfer and durability. This project provides valuable insights into analyzing bolted concrete-steel connections. It helps utilizing advanced modeling techniques in ABAQUS to simulate their behavior under different loading conditions. By addressing the benefits and challenges of experimental and numerical methods, this project enhances our understanding of composite connections. It enables improved construction practices. To ensure model’s accuracy, we compared the results with the experimental data, for steel concrete bolts. The project specifically helps you to simulate the bahavior of steel concrete composite beams in the following paper. “A study on structural performance of deconstructable bolted shear connectors in composite beams”  

3D Simulation of Gurson-Tvergaard-Needleman (GTN) Damage Model

 190.0
The GTN (Gurson-Tvergaard-Needleman) damage model is a robust continuum damage model used to simulate ductile fracture in materials. It accounts for porosity, a key damage parameter, to predict material behavior under various loading conditions. The model's benefits include comprehensive fracture analysis, accurate damage prediction, versatility, and enhanced simulation capabilities. Despite these advantages, implementing the GTN model in software like Abaqus (GTN model Abaqus) is challenging. It is due to the need for custom subroutines, such as VUMAT. However, writing the subroutine requires proficiency in Fortran programming and an understanding of finite element analysis. This project provides a detailed guide for using the VUMAT subroutine to define the GTN model in Abaqus. It addresses challenges like high computational costs and the need for extensive experimental data. The tutorial demonstrates the model's application in material design, failure analysis, structural integrity assessment, research and development, and manufacturing process simulation. By exploring stress distribution, nodal temperatures, and displacement fields, the project aims to enhance the understanding and predictive capabilities of the GTN damage model.

Simulation of an Ultrasonic Transducer (3D Ultrasonic Vibration Assisted Turning Tool)

 190.0

Since the invention of ultrasonic vibration assisted turning, this process has been widely considered and investigated. The reason for this consideration is the unique features of this process which include reducing machining forces, reducing wear and friction, increasing the tool life, creating periodic cutting conditions, increasing the machinability of difficult-to-cut material, increasing the surface quality, creating a hierarchical structure (micro-nano textures) on the surface and so on. Different methods have hitherto been used to apply ultrasonic vibration to the tip of the tool during the turning process. In this research, a unique horn has been designed and constructed to convert linear vibrations of piezoelectrics to three-dimensional vibrations (longitudinal vibrations along the z-axis, bending vibrations around the x-axis, and bending vibrations around the y-axis). The advantage of this ultrasonic machining tool compared with other similar tools is that in most other tools it is only possible to apply one-dimensional (linear) and two-dimensional (elliptical) vibrations, while this tool can create three-dimensional vibrations. Additionally, since the nature of the designed horn can lead to the creation of three-dimensional vibrations, there is no need for piezoelectric half-rings (which are stimulated by a 180-phase difference) to create bending vibrations around the x and y axes. Reduction of costs as well as the simplicity of applying three-dimensional vibrations in this new method can play an important role in industrializing the process of three-dimensional ultrasonic vibration assisted turning.

In this example, how to model all the components of an ultrasonic transducer and its modal and harmonic analysis are taught in full detail.

Simulation of pitting corrosion with scripting in Abaqus

 230.0
(3)
Pitting corrosion is a form of extremely localized corrosion that leads to the random creation of small holes in metal. It can occur with random sizes and distributions, typically modeled as conical or cylindrical shapes. This type of corrosion reduces the strength of structures and increases stress concentration. So, it can lead to various destructive effects such as pipes bursting and reduced resistance to internal pressure. By pitting corrosion simulation, you can assess how corrosion affects stress, vibration, heat transfer, and other factors. This is crucial for enhancing the durability and safety of structures such as storage tanks, shafts, tubes, pipes, and other industrial components. This tutorial includes two scripts for pitting corrosion analysis. They help you to conduct Abaqus pitting corrosion simulation for different examples including a simple plate and a shaft.

Laser forming simulation tutorial in Abaqus

 120.0
(1)
The laser forming process is performed by applying thermal stresses to the workpiece surface by heating the surface with a laser beam. These internal stresses induce plastic strains in the part resulting in local elastic-plastic deformation (Laser-induced plastic deformation). In this laser forming simulation tutorial the DFLUX subroutine is used to apply heat flux (Gaussian heat distribution) dependent on location and time in finite element simulation. For example, the linear heating processes of laser forming and welding (with a slight simplification) can be simulated by this subroutine. In the linear heating process, by applying heat flux to the surface of a sheet, a thermal gradient is created in its thickness. This thermal gradient causes permanent deformation of the sheet. To simulate the laser forming process, it is necessary to apply a time and location-dependent heat flux to the sheet. In this type of loading, a heat flux is applied on the plate, which is defined using the DFLUX subroutine, including the laser power, movement speed, beam diameter, absorption coefficient, and laser movement path according to the designed experiments (Laser forming process parameters). To verify this Abaqus laser forming simulation, the simulation results and experimental results of sheet deformation (U) are compared. The displacement of the sheet in the simulation is in good agreement with the experimental results.

Friction Stir Welding simulation Tutorial | FSW Advanced level

 100.0
(1)
Friction stir welding (FSW) involves complex material flow and plastic deformation. Welding parameters, tool geometry, etc., have important effects on the material flow pattern, heat distribution, and eventually on the structural evolution of the material. In an Abaqus friction stir welding example, the rotational movement of the tool and its friction in contact with the workpiece causes heat generation, loss of strength, and an increase in material ductility around the tool. The feeding movement of the tool causes the material to transfer from the front of the tool to the back of it, and eventually leads to a join. Therefore, heat plays an important role in this process, and parameters such as rotational speed, tool feeding speed, tool geometry, and others, all somehow have a significant impact on controlling the amount of incoming heat, the disturbance and flow pattern of the material, the evolution of the microstructure, and the quality of the resulted weld. This friction stir welding example simulation tutorial shows you how to simulate the Abaqus FSW simulation process in such a way that you can accurately predict the effect of all relevant parameters on the process. In most of the implemented projects, welding mud, and welding defects (welding overfills and overlaps, weld gaps) are not visible and predictable; however, in this simulation, these cases are visible. This project is designed to enhance participants' understanding of how to accurately simulate the FSW process to see the weld's general appearance.

Airfoil simulation with different angles of Attack | Ansys fluent

 220.0
(1)
Airfoils are a vital and important part of many industrial units. For example, in many kinds of rotary equipment such as gas turbines and wind turbines or compressors, airfoils play a vital role. Another usage of airfoils is in the aviation industry, which they used in airplane wings. The crucial parameters that are important in airfoils are the drag and lift forces or drag and lift coefficients. By using these parameters, we can design better airfoils to achieve greater lift coefficients and lesser drag coefficients. With this package, you learn airfoil simulation; how to design, mesh, and simulate an airfoil. Also, you learn how to link MATLAB to Ansys Fluent to change the geometrical constraints and boundary conditions automatically (airfoil simulation Ansys). You can use this method for your own optimization.

Sloshing Simulation in Cylindrical Water Storage Tanks: An Abaqus Modeling Framework

 120.0
(1)
Liquid storage tanks have many applications in water supply systems and industrial environments. However, seismic damages to these tanks present significant challenges. One of the well-known damages observed in tanks during earthquakes is roof fracture caused by liquid sloshing. Sloshing is a phenomenon that liquid surface moves during seismic events. In this project, we used ABAQUS for the sloshing simulation in ground-supported cylindrical tanks. The tank experiences the acceleration of the El-Centro earthquake. The Abaqus sloshing simulation involves the calculation of Rayleigh damping factors and natural frequencies, employing the ALE meshing technique, and incorporating hourglass controls in Abaqus. We have suggested two ways for the tank sloshing simulation: one involves assigning a low viscosity to the water, and the other is applying Rayleigh damping factors with the assumption of an inviscid fluid. For verification, we modeled a water tank and compared the results with those obtained in the following paper: “Parametric study on the dynamic behavior of cylindrical ground-supported tanks”

Simulation and analysis of a 6-cylinder V engine with MSC Adams

 100.0
A 6-cylinder V engine is a type of internal combustion engine that features six cylinders arranged in a V-shaped configuration. This design allows for a more compact and efficient engine compared to traditional inline configurations. The cylinders are typically divided into two banks, each with three cylinders, set at an angle to each other. The V configuration provides a more balanced and smoother operation, reducing vibrations and improving overall performance. This engine layout is commonly used in a variety of vehicles, including cars, trucks, and SUVs, due to its combination of power, efficiency, and smooth operation.

Short fiber composite damage (Mean Field Homogenization Model)

 220.0
(9)
Short-fiber reinforced thermoplastics, popular due to their strength, lightness, and cost-effectiveness, are often manufactured using injection molding to create complex parts with dispersed short fibers. However, failure in these materials is complex, involving mechanisms like fiber cracking and plastic deformation. Current models for damage and failure are either macroscopic or simplified. A new method tackles this challenge by evaluating stiffness using continuum damage mechanics with a multistep homogenization approach. This new method is called “Mean Field Homogenization”. This approach involves a two-stage process: first, the fibers are split into groups (grains). Then, mean-field homogenization is employed within Abaqus using a UMAT subroutine to average stiffness across these phases, followed by overall homogenization. This use of mean-field homogenization Abaqus simplifies the modeling of the composite's intricate geometry. The method was validated through testing on a distal radius plate. Calibration was achieved through experiments, and the simulation was performed using Abaqus finite element software. It's important to note that the Abaqus short fiber damage mean field homogenization process was implemented within Abaqus through the INP code.