ABAQUS
Abaqus for beginners (Abaqus tutorial for civil engineering)
In the present Abaqus tutorial for civil engineering package, we have presented all the software skills that a civil engineer needs when he wants to use his/her engineering knowledge in computer-aided designing. Abaqus tutorial for civil engineering covers all you need to simulate concrete, reinforcements, buckling, frequency, damage, composite, cohesive and more topics. You can download the syllabus of this package here.
ABAQUS Projects Package
If you need common industrial simulations in the fields of forming, fracture, explosion, impact, etc., this package can provide you with comprehensive training along with an instructional video file and software file. You can quickly meet your educational needs in learning the elementary and intermediate level of Abaqus software using this package.
Essential Package
In this package, you can get comprehensive training of the following very useful four subroutines at a lower cost. In this package, more than 9 hours of practical training in the form of videos, PowerPoint, and workshops are provided.
During the years of our activities, many students and professors have received these 5 practical packages from us, and we decided to offer this popular package in the form of the “Essential Package” at a reasonable price.
We assure you that by providing this package, you will be answered to how to define the properties of complex materials or complex loads and contacts very quickly and will save you a lot of time. Because in the training workshops of these packages, there are several practical examples for using these subroutines that can make you a professional in writing them quickly.
Golden Package
If you are a graduate or Ph.D. student, if you are a university professor or an expert engineer in the industry who deals with simulation software, you are definitely familiar with the limitations of this software in defining the material properties, loading or meshing, interaction properties, and etc. You have certainly tried to define the properties of materials based on advanced fracture theories in finite element software and are familiar with their limitations and problems.
Now, here is your solution. Start writing subroutines in finite element software and overcome the limitations. With the tutorials in the Golden Package, you will learn how to write 8 subroutines in Abaqus software professionally.
3D continuum Abaqus HASHIN progressive Damage for composite materials (VUMAT Subroutine)
This tutorial teaches how to simulate damage in 3d continuum composite materials in ABAQUS. As you know, Abaqus does not have any material model for 3d composite materials. So, the user needs to write a customized subroutine to simulate damage initiation and progressive damage for composite materials in ABAQUS. In this package, one of the most practical damage initiation criteria (Hashin) is used to detect failure. It should be mentioned that this subroutine includes gradual progressive damage based on the energy method. This complex subroutine could be used for static and dynamic problems.
DFLUX Subroutine (VDFLUX Subroutine) in ABAQUS
DFLUX subroutine (VDFLUX Subroutine) is used for thermal loading in various body flux and surface flux states in heat transfer and temperature displacement solvers when flux load is a function of time, place, or other parameters. In this package, you will learn “when do you need to use this subroutine?”, “how to use the DFLUX subroutine”, “what is the difference between DFLUX & VDFLUX?”, “how to convert DFLUX to VDFLUX and vice versa?”, and “How to use it in an example?”. Three workshops are presented so you can learn all these stuff in action: Simulation of welding between two plate with DFLUX subroutine, Simulation of Arc welding between two tube with DFLUX, and Simulation of different types of functional heat flux(Body-surface-Element) in plate with Johnson-cook plasticity with VDFLUX subroutine(Thermomechanical Analysis).
Advanced UMAT Subroutine (VUMAT Subroutine) – Abaqus UMAT tutorial
This training package helps Abaqus users to prepare complex UMAT and VUMAT subroutines. This Abaqus UMAT tutorial package is suitable for those who are familiar with subroutine or want to learn UMAT/VUMAT subroutine Professionally. Equations for computational plasticity based on kinematic stiffness are also discussed. In addition, metal damage has been implemented based on Johnson Cook's model.
Watch Demo
Professional Package
As a professional Abaqus user, you have probably faced cases where you have to move meshes and elements during analysis. For example, there is such a need in the wearing process. In addition, to define the properties of materials based on advanced theories of elasticity or plasticity, you need programming within the software. Sometimes you may need to model different types of cohesive or many types of composite materials based on various methods of composite damage. In all these cases, be sure that the professional package will answer you. This package is designed and prepared for you who are professionals and work on the edge of knowledge topics in the field of mechanical engineering and damage mechanics.
Sometimes you may need to use user-defined elements and change element configuration based on theories that you are using; for instance, it is needed to add more integration points in elements. In this case, you can use the UEL package in the “Professional Package”.
Simulation of Unidirectional Composite Damage in ABAQUS
This package introduces and applies various theories to initiate and progress damage in composite materials based on ABAQUS capabilities for different elements. As you know, according to the modeling done by the micro or macro method, the way of defining the Abaqus composite damage completely follows the separate method in ABAQUS. This training package is customized for macro modeling of composite structures.
Additive manufacturing simulation with Abaqus AM modeler plugin
Since computer-aided design and 3D printing directly result in the fabrication of actual components, 3D printing technology is crucial. The ADM plug-in is used as part of this teaching package to model additive manufacturing. This plugin is a cutting-edge tool for simulating 3D printing and covering many ADM procedures. It appears to be the best simulator for additive manufacturing or 3D printing available right now!
Additive manufacturing simulation with Abaqus subroutine & python | 3D printing Python
The process of building a three-dimensional object from a CAD model or digital 3D model is known as additive manufacturing or 3D printing. In an additive process, an object is made by adding layers of material one after another until the product is made. This package will teach you additive manufacturing or 3d printing simulation based on the use of subroutines and Python scripting and was done by a team with the goal of coding all the steps of 3D printing.
SPH in Abaqus
SPH (Smoothed Particle Hydrodynamics) is a numerical method used in Abaqus for modeling fluid-structure interaction problems. It is a meshless approach that uses a set of particles to discretize the fluid domain, allowing for efficient and accurate simulation of complex flows. The method is particularly useful for problems with large deformations, fragmentation, and free surface effects. Abaqus' implementation of SPH includes a wide range of capabilities, such as adaptive smoothing lengths, particle splitting and merging, and boundary handling techniques. It can be used in combination with other Abaqus features, such as finite element analysis, to model coupled fluid-structure systems. You can learn how to use this method by practical examples in this package; some them are Projectile impact simulation on a cementitious material, TNT explosion simulation inside a rock with the SPH method, Bullet Movement through Water Pipe in Abaqus.