Showing all 10 results

Simulation of an Ultrasonic Transducer (3D Ultrasonic Vibration Assisted Turning Tool)

 190.0

Since the invention of ultrasonic vibration assisted turning, this process has been widely considered and investigated. The reason for this consideration is the unique features of this process which include reducing machining forces, reducing wear and friction, increasing the tool life, creating periodic cutting conditions, increasing the machinability of difficult-to-cut material, increasing the surface quality, creating a hierarchical structure (micro-nano textures) on the surface and so on. Different methods have hitherto been used to apply ultrasonic vibration to the tip of the tool during the turning process. In this research, a unique horn has been designed and constructed to convert linear vibrations of piezoelectrics to three-dimensional vibrations (longitudinal vibrations along the z-axis, bending vibrations around the x-axis, and bending vibrations around the y-axis). The advantage of this ultrasonic machining tool compared with other similar tools is that in most other tools it is only possible to apply one-dimensional (linear) and two-dimensional (elliptical) vibrations, while this tool can create three-dimensional vibrations. Additionally, since the nature of the designed horn can lead to the creation of three-dimensional vibrations, there is no need for piezoelectric half-rings (which are stimulated by a 180-phase difference) to create bending vibrations around the x and y axes. Reduction of costs as well as the simplicity of applying three-dimensional vibrations in this new method can play an important role in industrializing the process of three-dimensional ultrasonic vibration assisted turning.

In this example, how to model all the components of an ultrasonic transducer and its modal and harmonic analysis are taught in full detail.

Modal and Frequency Analysis in Abaqus | Abaqus modal Analysis

 70.0
Modal analysis is a technique used to understand how structures and systems vibrate when subjected to forces. It identifies natural frequencies, which are frequencies at which a system vibrates without external excitation, and mode shapes, representing unique patterns of motion. Engineers use modal analysis simulation to design systems resistant to unwanted vibrations, preventing resonance and potential damage. Frequency response analysis evaluates a structure's reaction to specific excitations across varying frequencies, aiding in design optimization to mitigate fatigue damage caused by vibrations. In Abaqus software, Abaqus modal analysis identifies natural frequencies (Abaqus natural frequency) and mode shapes, while frequency response analysis predicts a structure's response to excitation across a frequency range. In Abaqus modal analysis tutorial package, there are several modal analysis examples (modal analysis example): Workshop 1 analyzes the natural frequency of a water transfer tube to predict resonance occurrence or potential issues from vibrations. Workshop 2 simulates the dynamic analysis of a frame under a sudden load, determining modes, natural frequencies, and transient dynamic response. Workshop 3 simulates free and forced vibrations of a wire under harmonic excitation, examining resonance phenomena with preloading and spring-damper configurations. These workshops demonstrate practical applications of modal and frequency response analyses in structural dynamics simulation and design.

Abaqus Explosion

 89.0
(1)
An explosion is a rapid and violent release of energy, usually accompanied by a loud noise, heat, and pressure waves. Explosions can be caused by a variety of factors such as chemical reactions, combustion, nuclear reactions, or mechanical failure. Explosions can cause severe damage to buildings, infrastructure, and human life. To minimize the impact of such incidents, accurate and reliable simulation of explosions is crucial. Explosion simulation involves modeling the complex interactions of blast waves, shock waves, and debris with the surrounding environment. By simulating explosions, engineers and scientists can identify potential risks and develop effective safety measures. In this package, you will learn how to model explosions in different situations with practical examples, such as Air blast explosion simulation inside an RC room and Subsurface explosion simulation on buried steel pipelines.

Acoustic simulation in Abaqus

 109.0
The study of mechanical waves in gases, liquids, and solids, including issues like vibration, sound, ultrasound, and infrasound, is the focus of the physics subfield of acoustics. A shock wave is a sort of disturbance that propagates across a medium faster than the local speed of sound. In industry, we use acoustic loading in cases such as hydraulic forming, SONAR, seismology, acoustic emission, vibration analysis, engine testing, etc. In this package, you will learn how to model acoustic loadings and shock loadings in four workshops: Deformation behavior of a stiffened panel subjected to underwater shock loading, Acoustic method-based numerical simulation of the electro-hydraulic forming process, Failure modes of concrete gravity dams simulation exposed to an underwater explosion, and Simulation of hull Coupled acoustic-structural response subjected to an underwater explosion.
 

Python scripting in ABAQUS-(FREE Version)

 0.0
(14)
This training package(free version) includes one of three and two of five workshops that help you to partially learn how to use Python scripting in Abaqus software. This is likewise the most comprehensive tutorial for the script, and it is appropriate for beginners to advanced users. The subjects such as parameterization, optimization, sequential running and etc. are covered in this tutorial. To access the full version of this package, click here. It should be mentioned, that the free version of this package, it is not included software files and scripts.  

Customized Package

 1370.0 / year
Abaqus tutorial     Make payment based on your invoice Abaqus tutorial     This product and amount are available temporary based on your invoice due time

Explosion simulation in ABAQUS

 140.0
(3)
This training package teaches simulation of the explosion in ABAQUS with a variety of examples. In this training package, different methods for implementation are discussed.

Silver Membership

 789.0 / year
Here is a description for the membership to access ABAQUS packages based on the provided details: ABAQUS Packages Membership
  • Duration: 12 months
  • Cost: €789 per 12 months
  • Packages Included: 5 packages
  • Packages Paid For: 4 packages
  • Discount: More than 55%
Package Details:
  • Access to 5 ABAQUS training packages
  • Pay for only 4 packages, but receive 5 packages
  • Significant discount of more than 55% off the regular package pricing

Platinum Membership

 2489.0 / 2 years
Here is a description for the membership to access ABAQUS packages based on the provided details: ABAQUS Packages Membership
  • Duration: 24 months
  • Cost: €2,489 per 24 months
  • Packages Included: 20 packages
  • Packages Paid For: 13 packages
  • Discount: More than 65%
Package Details:
  • Access to 20 ABAQUS software packages
  • Pay for only 13 packages, but receive 20 packages
  • Significant discount of more than 65% off the regular package pricing

Golden Membership

 1389.0 / year
Here is a description for the membership to access ABAQUS packages based on the provided details: ABAQUS Packages Membership
  • Duration: 12 months
  • Cost: $1,389 per year
  • Packages Included: 10 packages
  • Packages Paid For: 7 packages
  • Discount: More than 60%