Showing 1–24 of 61 results

Concrete Damage Plasticity Simulation of FRP-Confined Concrete Columns in Abaqus

Original price was: € 280.0.Current price is: € 252.0.

This tutorial package provides a comprehensive guide to simulating fiber-reinforced polymer (FRP)-confined concrete columns using the Concrete Damaged Plasticity Model (CDPM) in Abaqus, based on a detailed finite element method (FEM) analysis from the associated research paper. The tutorial focuses on key modeling aspects such as material definition, boundary conditions, meshing, and the inclusion of a custom subroutine (USDFLD) for precise control of concrete behavior under confinement.

In this tutorial, you will learn how to implement a modified CDP model, which includes strain hardening and softening rules, and a new concrete dilation model calibrated for FRP-confined concrete. The package also explains the usage of the USDFLD subroutine to modify material properties dynamically during simulation, ensuring a more accurate representation of the concrete's behavior under triaxial stress states. By following the detailed steps in this tutorial, you will be able to create and analyze advanced FEM simulations in Abaqus with a focus on confined concrete.

0 days 00 hr 00 min 00 sc

Damage Prediction in Reinforced Concrete Tunnels under Internal Water Pressure

Original price was: € 370.0.Current price is: € 333.0.

This tutorial package equips you with the knowledge and tools to simulate the behavior of reinforced concrete tunnels (RCTs) subjected to internal water pressure. It combines the power of finite element (FE) modeling with artificial intelligence (AI) for efficient and accurate analysis. The Taguchi method optimizes the number of samples needed for FE analysis, and this method is used with SPSS after explanation its concept.

By leveraging Artificial Intelligence (AI) techniques such as regression, GEP, ML, DL, hybrid, and ensemble models,  we significantly reduce computational costs and time while achieving high accuracy in predicting structural responses and optimizing designs.

0 days 00 hr 00 min 00 sc

Hygrothermal Degradation in Fiber Reinforced Composites | Abaqus Parallel Simulation with Python Scripts and Fortran Subroutines

Original price was: € 280.0.Current price is: € 252.0.

In this tutorial, we explore the hygrothermal degradation of fiber-reinforced composites using ABAQUS, a powerful tool for parallel finite element analysis. Industries like aerospace, marine, and automotive heavily rely on these composites due to their high strength-to-weight ratio and versatility. However, long-term exposure to moisture and temperature can degrade their mechanical properties, making hygrothermal analysis essential for ensuring durability. ABAQUS enables precise modeling of these conditions through Python scripts and Fortran subroutines. This combination allows for efficient simulations across multiple processors, offering insights into the material's elastic properties, such as Young’s and shear modulus, under varying environmental conditions. By leveraging the ABAQUS Python Scripting Micro Modeling (APSMM) algorithm and custom subroutines, engineers can predict how fiber-reinforced composites will perform over time, optimizing design and enhancing performance across critical sectors like aerospace and marine.

In the present Abaqus tutorial for parallel finite element analysis, we have presented the software skills that a person needs when he wants to perform a parallel finite element analysis such as a micro-macro scale analysis. The Abaqus tutorial for parallel finite element analysis covers all you need to write a python scripting code for noGUI environment and also Fortran code for the subroutine environment of Abaqus to execute a parallel finite element analysis via Abaqus software. You can download the syllabus of this package here.

0 days 00 hr 00 min 00 sc

Scaled Boundary Finite Element Method (SBFEM) Modeling Files for ABAQUS

Original price was: € 290.0.Current price is: € 260.0.

The Scaled Boundary Finite Element Method (SBFEM) enhances traditional Finite Element Analysis (FEA). It provides flexibility in handling complex geometries and interfaces. Integrated into ABAQUS, SBFEM allows for the creation of polyhedral elements, reducing meshing challenges. It effectively manages non-matching meshes and complex boundary conditions, particularly in interfacial problems like contact mechanics and fracture analysis. ABAQUS supports custom user elements (UEL), enabling direct integration of SBFEM with advanced solvers, improving efficiency and expanding its applicability to complex engineering problems. The open-source implementation allows for customization, making SBFEM in ABAQUS a powerful tool for precise and efficient simulations. This is particularly beneficial in scenarios requiring advanced FEA.

0 days 00 hr 00 min 00 sc

Post-Fracture Analysis of Glass with Abaqus

Original price was: € 140.0.Current price is: € 126.0.

This tutorial explores a finite element method (FEM) simulation using Abaqus to analyze the post-fracture behavior of structural glass members retrofitted with anti-shatter safety films. It focuses on simulating the vibration response of cracked glass elements under repeated impacts and temperature gradients, following the methodology outlined in the research article "Effects of post-fracture repeated impacts and short-term temperature gradients on monolithic glass elements bonded by safety films".

Key aspects include modeling glass fracture, assigning material properties, and defining boundary conditions to assess the vibration frequency and load-bearing capacity of cracked glass members. Additional topics cover dynamic identification techniques, performance indicators for glass retrofit efficiency, and frequency sensitivity analysis under various operational and ambient conditions. The simulation results help quantify the residual strength of safety films in post-fracture scenarios, providing a robust framework for structural engineers to extend this investigation to other glass configurations.

This tutorial is ideal for users who want to understand FEM modeling in Abaqus and perform detailed simulations involving complex material interactions, with a focus on practical applications in glass retrofit technology.

0 days 00 hr 00 min 00 sc

An Efficient Stiffness Degradation Composites Model with Arbitrary Cracks | An Abaqus Simulation

 0.0
(3)
Composite materials are critical in high-performance applications due to their exceptional strength-to-weight ratios and customizable properties. They are widely used in aerospace, automotive, and civil engineering. However, their complex structure makes them susceptible to various damage mechanisms, such as tunnel cracking and delamination, which can significantly affect their structural integrity. Accurate damage prediction is essential for effective use and maintenance. Traditional methods often rely on extensive experimental testing, but finite element analysis (FEA) has become a valuable alternative. Abaqus is particularly effective for modeling composite damage due to its comprehensive material modeling and customizable subroutines. The research presented utilizes Abaqus to develop a model for predicting Stiffness Degradation Composites laminates with arbitrarily oriented cracks, offering valuable insights into damage progression and stiffness loss under various loading conditions. To achieve this, UEL, UMAT, and DISP subroutines are used. Additionally, a Python script is provided to import the model into Abaqus.  

Seismic Analysis in Post-Tensioned Concrete Gravity Dam Design Using Abaqus Subroutines

Original price was: € 190.0.Current price is: € 170.0.
This project investigates the seismic analysis of post-tensioned concrete gravity dams. To achieve this, we utilized ABAQUS CAE with the UEL (User Element) subroutine. The project enhances the simulation of complex structural interactions, including inclined anchors and weak joints, which are crucial elements in concrete gravity dam design. Specifically, it provides a detailed comparison between transient and pseudo-static analysis results. This comparison is essential for understanding how the dynamic responses and structural behavior of these dams under seismic conditions can be effectively modeled and validated within the broader scope of concrete gravity dam design. Moreover, the project offers insights into potential debonding issues and their impact on post-tensioning forces, which are critical considerations in concrete gravity dam design. This research benefits civil engineers and academics by advancing the methodologies used for designing and analyzing the resilience of gravity dams, particularly in earthquake-prone regions.
0 days 00 hr 00 min 00 sc

Fiber-based Model for High-Strength Steel Beam Analysis with Abaqus

Original price was: € 190.0.Current price is: € 170.0.
Designers create high-strength steel beams to enhance load-bearing capacity and reduce weight, which is crucial for seismic-resistant structures. Accurate design and High-Strength Steel Beam Analysis are essential to address local buckling and low-cycle fatigue. While experimental methods are costly, numerical simulations using tools like ABAQUS offer precise analysis and modeling capabilities. These include, for example, the stress-strain curve generation and cyclic loading protocols. This project mainly provides a tutorial on ABAQUS modeling, aimed at improving the design and analysis of high-strength steel sections. To do so, it discusses the material property definitions, plasticity models, and mesh details.
0 days 00 hr 00 min 00 sc

Advanced Finite Element Analysis of Off-Axis Tunnel Cracking Laminates

 0.0
(5)
The project investigates off-axis oriented tunnel cracking laminates. It focuses on cracks growing at an angle to the primary fiber direction in layered laminates. By examining factors such as ply thickness, crack spacing, and material properties, the study analyzes how these elements influence the energy release rate and mode mix during crack propagation. The project employs Abaqus CAE, along with UEL and UMAT subroutines, to model and analyze these cracks. It offers comprehensive insights into crack growth mechanics under various loading conditions. Moreover, a Python script is used to automate the entire simulation process. It handles tasks such as geometry creation, defining model properties, setting boundary conditions, generating and modifying input files, and post-processing. So, it enables us to calculate crack profiles and energy release rates. The project benefits researchers, engineers, academics, and industry practitioners by providing valuable methodologies and insights into the behavior of composite materials.

Abaqus shaft slip ring simulation | Using Python scripts for parametric analysis

 270.0
The shaft slip ring is a crucial component enabling the transfer of power and signals in rotating systems. So, this tutorial delves into the intricate Abaqus shaft slip ring analysis. It focuses primarily on the mechanical aspects, offering insights into displacement, stress fields, and strains through the shaft analysis Abaqus model. The tutorial utilizes parametric modeling and Python scripting for the Abaqus shaft slip ring simulation. So, it enables you to optimize geometric parameters, material properties, and loading conditions, enhancing efficiency in modeling processes. It addresses complexities such as creep behavior and material interactions, providing a comprehensive approach tailored for realistic simulations. The tutorial meets various project requirements, supporting them with practical examples and adaptable simulation files.

3D Simulation of Gurson-Tvergaard-Needleman (GTN) Damage Model

 190.0
The GTN (Gurson-Tvergaard-Needleman) damage model is a robust continuum damage model used to simulate ductile fracture in materials. It accounts for porosity, a key damage parameter, to predict material behavior under various loading conditions. The model's benefits include comprehensive fracture analysis, accurate damage prediction, versatility, and enhanced simulation capabilities. Despite these advantages, implementing the GTN model in software like Abaqus (GTN model Abaqus) is challenging. It is due to the need for custom subroutines, such as VUMAT. However, writing the subroutine requires proficiency in Fortran programming and an understanding of finite element analysis. This project provides a detailed guide for using the VUMAT subroutine to define the GTN model in Abaqus. It addresses challenges like high computational costs and the need for extensive experimental data. The tutorial demonstrates the model's application in material design, failure analysis, structural integrity assessment, research and development, and manufacturing process simulation. By exploring stress distribution, nodal temperatures, and displacement fields, the project aims to enhance the understanding and predictive capabilities of the GTN damage model.

Viscoplasticity Abaqus Simulation Using UMAT Subroutine | Perzyna Viscoplastic Model

Original price was: € 270.0.Current price is: € 243.0.

Viscoplasticity describes the rate-dependent inelastic behavior of materials, where deformation depends on both stress magnitude and application speed. This concept is crucial in many engineering applications, such as designing structures under dynamic loads, modeling soil behavior during earthquakes, and developing materials with specific mechanical properties. Viscoplasticity Abaqus simulation, especially using Abaqus with UMAT subroutines, are vital for understanding, predicting, and optimizing the behavior of viscoplastic materials. This tutorial focuses on implementing the Perzyna viscoplasticity model in Abaqus. The Perzyna viscoplastic model, a strain rate-dependent viscoplasticity model, relates stress to strain through specific constitutive relations. This involves defining plastic strain rate based on stress state, internal variables, and relaxation time. The tutorial provides general UMAT codes for viscoplastic analysis, yielding results like stress fields essential for various engineering applications. These simulations help in predicting permanent deformations, assessing structural failure points, and analyzing stability under different loads, benefiting fields such as aerospace, automotive, civil engineering, and energy.

0 days 00 hr 00 min 00 sc

Pultrusion Crack Simulation in Large-Size Profiles | Pultrusion Abaqus

Original price was: € 250.0.Current price is: € 225.0.
(10)

Pultrusion is a crucial task for producing constant-profile composites by pulling fibers through a resin bath and heated die. Simulations play a vital role in optimizing parameters like pulling speed and die temperature to enhance product quality and efficiency. They predict material property changes and aid in process control, reducing reliance on extensive experimental trials. However, simulations face challenges such as accurately modeling complex material behaviors and requiring significant computational resources. These challenges underscore the need for precise simulation methods to improve Pultrusion processes. This study employs ABAQUS with user subroutines for detailed mechanical behavior simulations, including curing kinetics and resin properties. Key findings include insights into crack formation (pultrusion crack simulation), material property changes, and optimization strategies for enhancing manufacturing efficiency and product quality. This research (pultrusion Abaqus) provides practical knowledge for implementing findings in real-world applications, advancing composite material production.

0 days 00 hr 00 min 00 sc

Theta Protection Creep Model | Turbine Blade Creep Life Accurate Prediction | Creep Failure in Turbine Blades

 250.0
(10)

Creep is one of the most significant failure modes in many components where the working temperature and stresses are high for a prolonged period of time. Existing creep models in commercial analysis software like Abaqus are not adequate to model all stages of creep namely – primary, secondary, and tertiary stages. Theta projection method is a convenient method proven to predict all stages of creep, especially the tertiary stage where strain rates are high leading to internal damage and fracture. The aim of the project is to develop a user subroutine for Abaqus to model creep in components using the Theta projection method. The constitutive model for the Theta projection method based on the accumulation of internal state variables such as hardening, recovery, and damage developed by (R.W.Evans, 1984) is adopted to compile a Fortran code for the user subroutine. The user subroutine is validated through test cases and comparing the results with experimental creep data. Creep analysis of a sample gas turbine blade (Turbine Blade Creep) is then performed in Abaqus through the user subroutine and the results are interpreted.

Results of test cases validate the accuracy of the Theta Projection Method in predicting all primary, secondary, and tertiary stages of creep than existing creep models in Abaqus (Creep Failure in Turbine Blades). Results at interpolated & extrapolated stress & temperature conditions with robust weighted least square regression material constants show the convenience in creep modeling with less input data than existing models. The results of creep analysis not only predicted the creep life but also indicated the internal damage accumulation. Thus, creep modeling of components through the user subroutine at different load conditions could lead us to more reliable creep life predictions and also indicate the regions of high creep strain for improvements in the early stages of design.

Dynamic Response of Rail Track Analysis Under a Moving Load

 190.0

Railway tracks are subjected to moving loads of trains and this causes vibration and degradation of the track. The judgment of these vibrations is important to design the railway tracks. Therefore, the rail track analysis become important. The design involves the permissible speed of trains and the maximum axle load of the train. The model given here creates a 3D geometry of a railway track and applies a moving load in the form of a wheel. A user can change the speeds and the properties of the material including geometry as per their needs.

Continuously Reinforced Concrete Pavement (CRCP) Cracking Analysis

 210.0
(1)

The increasing adoption of continuously reinforced concrete pavement (CRCP) in highway pavement design is driven by its demonstrated superior performance. Critical to evaluating the long-term effectiveness of CRCP is the understanding of early-age cracks (CRCP crack analysis), which has garnered significant interest from highway departments. This Abaqus Continuously reinforced concrete pavement modeling project aims to establish precise design parameters for CRCP and analyze the formation of crack patterns. By accounting for stress factors such as environmental conditions and CRCP shrinkage modeling, the project offers valuable insights into predicting the likelihood of crack initiation and propagation within the concrete slab. These insights are instrumental in enhancing the durability and performance of CRCP structures, thus advancing the efficiency and effectiveness of highway infrastructure.

Creep Analysis in Abaqus

 120.0
(11)
In engineering, creep phenomenon refers to the gradual deformation or strain that occurs in a material over time when it is subjected to a constant load or stress (usually lower than yield stress) at high temperatures. It is a time-dependent process that can lead to the permanent deformation and failure of the material if not properly accounted for in design considerations. Creep analysis is vital in engineering to understand material behavior under sustained loads and high temperatures. It enables predicting deformation and potential damage, ensuring safe and reliable structures. Industries like power generation and aerospace benefit from considering creep for long-term safety and durability of components. In this training package, you will learn about Creep phenomenon and its related matters; you will learn several methods to estimate the creep life of a system’s components, such as Larson-Miller; moreover, all Abaqus models for the creep simulation such as Time-Hardening law and Strain-Hardening law will be explained along with Creep subroutine; also, there would be practical examples to teach you how to do these simulations.

Damage Properties of Thermoplastic Polymers with UMAT Subroutine

 320.0
(1)
Thermoplastic polymers are materials composed of long molecular chains primarily consisting of carbon. These polymers possess the unique ability to be shaped and molded under heat and pressure while retaining their stability once formed. This high formability makes them widely used in various industries, including furniture production, plumbing fixtures, automotive components, food packaging containers, and other consumer products. This package introduces a thermodynamically consistent damage model capable of accurately predicting failure in thermoplastic polymers.  The implementation of this model is explained through the use of an ABAQUS user material (UMAT) subroutine. The package is structured as follows. The introduction section Provides an overview of thermoplastic polymers and their mechanical properties. In the Theory section, the constitutive damage model and its formulation are reviewed. Then, an algorithm for numerically integrating the damage constitutive equations is presented in the Implementation section. In the UMAT Subroutine section, a detailed explanation of the flowchart and structure of the subroutine is provided. Finally, two simulation examples, namely the T-fitting burst pressure test and the D-Split test, are performed and the obtained results, are investigated. Notice: Software files and A full PDF guideline (Problem description, theory, ...) are available; Videos are coming soon.

Abaqus for Civil Engineering Part-1

 1424.0
(1)
The "Abaqus for Civil Engineering” package is a comprehensive and invaluable resource designed to cater to the needs of civil engineering professionals, students, and enthusiasts alike. This all-inclusive package comprises a collection of several specialized tutorial packages, making it an essential tool for mastering various aspects of civil engineering. With this package, you gain access to an extensive library of high-quality video tutorials that cover a wide range of topics within civil engineering. Each tutorial provides clear, concise, and engaging explanations of fundamental concepts, advanced techniques, and practical applications.

Modeling Functionally Graded Materials (FGMs) in ABAQUS

 180.0
Dive into the realm of innovative engineering with our comprehensive tutorial package, designed to empower you in modeling Functionally Graded Materials (FGM) using the Abaqus USDFLD subroutine. Uncover the fascinating world of FGMs, materials that ingeniously vary their composition and microstructure, offering a nuanced control over mechanical, thermal, and other properties. The workshop component takes you on an exploration of crack paths in Spherical Functionally Graded Materials, emphasizing simulation techniques using Abaqus Standard and the USDFLD subroutine. Uncover the secrets of stress distribution within a pressured, empty sphere, and enhance your skills by implementing the XFEM method for precise crack characterization. This training ensures you gain valuable insights into subroutine development, empowering materials engineers and designers to innovate and elevate the performance of structures across various industries. Embark on your journey to mastery with this all-encompassing tutorial package.

Composite Pressure Vessel simulation in ABAQUS

 420.0
(13)
Pressure vessels are made using different methods today, and one of them is filament winding. This package shows the simulation of composite pressure vessels made using the filament winding method. In this training package, three winding methods, planar, geodesic, and isotensoid, have been taught for filament winding pressure vessels. In this tutorial, two general methods also have been presented for simulating filament wound pressure vessels. One uses the Abaqus graphical user interface(GUI), and the other uses the Python script. On the other hand, two criteria, Tsai-Hill and Puck, have been used to model damage in the composite. A UMAT subroutine has been used to use the Puck criterion.

Composite pressure vessel analysis with Semi-Geodesic winding

 400.0
(12)
Nowadays, pressure vessels are produced using various methods, one of which is filament winding. This package teaches the simulation of composite pressure vessels produced using the filament winding method. Filament winding itself has different methods, and one of the most widely used winding methods for producing composite vessels is the semi-geodesic filament winding method. In this package, first, the semi-geodesic method is described. Then, the simulation of a semi-geodesic vessel is performed using a Python script. Additionally, a UMAT subroutine is used to simulate the failure of composite materials used in the vessel.

Full Composite fatigue Add-on (Academic and industrial usage)

 1800.0
This package is designed to instruct users on how to utilize the composite fatigue modeling Add-on, which removes the need to write a subroutine for composite fatigue modeling. Instead, users can select the composite type, input material properties, and generate the subroutine by clicking a button. The Add-on includes four types of composites, and the generated subroutine for all types is the UMAT. These four types are Unidirectional, Woven, short fiber composites (chopped), and wood. The fatigue criteria used for each type are the same as its respective package. For example, the fatigue criteria for woven composites are identical to that used in the "Simulation of woven composite fatigue in Abaqus" package. This Add-on provides a simple graphical user interface for composite fatigue modeling, which can be utilized for both academic and industrial applications.

Full Composite damage Add-on (Academic and industrial usage)

 1800.0
(15)
This package will teach you how to use the composite damage modeling Add-on. The Add-on eliminates the need for writing a subroutine for composite damage modeling. Instead, you only need to select the desired composite type, input the material properties, and click a button. The Add-on will then generate the subroutine for you. The Add-on includes four types of composites: Unidirectional, Woven, short fiber composites (chopped), and wood. The generated subroutine for all types is the VUSDFLD. The damage criteria used in each type is the same as the one used in its respective package. For instance, the damage criteria for the woven composite is identical to the one used in the "Simulation of woven composite damage in the Abaqus" package. This Add-on offers a user-friendly graphical user interface for composite damage modeling, which can be used for academic and industrial purposes.