• Support[@]caeassistant.com
  • Contact Us
CAE Assistant CAE Assistant
Select category
  • Select category
  • Acoustic and shock analyses
  • Beginner's Packages
  • Beginners
  • Buckling and post buckling
  • CFD
  • Civil Engineering
  • Cohesive
  • Composite
  • Concrete Reinforcement
  • Dynamic Analysis
  • Explosion
  • Fatigue
  • Forming
  • Fracture/Failure
  • Free Packages
  • Full Packages
  • Geostatic
  • Heat Transfer
  • Impact
  • Mechanical Enginerring
  • Membership
  • New-Products
  • Optimization
  • Payment
  • Pre-Order
  • Scripting
  • Subroutine
  • Thermal mechanical Analysis
  • Training Package
  • Uncategorized
  • Utility
Menu
CAE Assistant CAE Assistant
0 items / € 0
0 Wishlist
  • Package Shop
    • Mechanical Engineering
      • Forming
      • Dynamic Analysis
      • Fracture/Failure
      • Fatigue
      • Impact
      • Composite
      • Cohesive
    • Civil Engineering
      • Acoustic and shock analyses
      • Buckling and post buckling
      • Geostatic
    • Special OffersHot
      • Free Packages
    • Coding/Utility
      • Subroutine
      • Scripting
      • Utility
  • Blog
    • Abaqus Tutorial & CoursesNew
    • Article
    • Questions and Answers
    • Video Gallery
  • Full PackagesTo be Expert
  • For Business/Academy
  • About Us
    • Our Portfolio
    • Our Company
Login / Register
0 Wishlist
0 items / € 0
New
ductile damage abaqus
HomeFracture/Failure Ductile Damage Abaqus model for 3D continuum element (VUMAT Subroutine)
Produced in Partnership Plan

Ductile Damage Abaqus model for 3D continuum element (VUMAT Subroutine)

€ 320

In this package, the continuum damage mechanics framework for ductile materials  is implemented and developed in ABAQUS by VUMAT Subroutine.

Constitutive modeling is treated within the framework of continuum damage mechanics (CDM) and the effect of micro-crack closure, which may decrease the rate of damage growth under compression, is incorporated and implemented.

The present package has been organized as follows. In the Introduction section, the basis of the CDM in ductile materials is explained, and the applications of the CDM are stated. In the Theory section, the CDM model formulation is briefly reviewed, and with micro-crack closure, the effect is described. In the Implementation section, an algorithm for the numerical integration of the damage constitutive equations is presented. In the VUMAT Subroutine section, the flowchart of the subroutine, and the subroutine structure, step by step, are explained in detail. How to run the VUMAT Subroutine in ABAQUS will be presented in this section. In the Verification section, the validation and verification of the numerical implementation will be evaluated, and the stability, convergence and accuracy of the results will be investigated. In the Application section, the applications of using the ductile damage model in mechanical processes are presented, and the prediction of damage growth and failure in mechanical processes is investigated.

You can access software files and subroutines from your dashboard immediately after purchase.

Video training files are available from your dashboard 2 months after purchase

 

Add to wishlist
  • Description
  • Additional information
  • Reviews (0)
  • Shipping and Delivery
Description

Abstract

In this package, the continuum damage mechanics framework for ductile materials developed by Lemaitre is implemented and developed in ABAQUS by VUMAT Subroutine. A wide range of element types, material models and other facilities, such as efficient equation solvers, are available for the user in the ABAQUS software. A fully coupled constitutive elastic-plastic-damage model is used.

Constitutive modeling is treated within the framework of continuum damage mechanics (CDM) and the effect of micro-crack closure, which may decrease the rate of damage growth under compression, is incorporated and implemented.

The present package has been organized as follows. In the Introduction section, the basis of the CDM in ductile materials is explained, and the applications of the CDM are stated. In the Theory section, the CDM model formulation is briefly reviewed and with micro-crack closure, the effect is described. In the Implementation section, an algorithm for the numerical integration of the damage constitutive equations is presented. In the VUMAT Subroutine section, the flowchart of the subroutine, and the subroutine structure, step by step, are explained in detail. How to run the VUMAT Subroutine in ABAQUS will be presented in this section. In the Verification section, the validation and verification of the numerical implementation will be evaluated, and the stability, convergence and accuracy of the results will be investigated. In the Application section, the applications of using the ductile damage model in mechanical processes are presented, and the prediction of damage growth and failure in mechanical processes are investigated.

Introduction

The damage of materials is the progressive physical process by which they break. Damage mechanics is the study, through mechanical variables, of the mechanisms involved in this deterioration when the materials are subjected to loading. In the section, the phenomenological aspects of damage with a description of the different kinds of damage are introduced. Particularly damage models in ductile metals are proposed by Chaboche [1], and Lemaitre [2] are discussed. Under compressive loading, voids and micro-cracks that would grow under tension will partially close, reducing the damage growth rate. This phenomenon can be important in the simulation of forming processes. In this section, all the necessary conditions and parameters affecting ductile damage modeling are introduced.

Preview

  • What do we learn from this package?
  • Teaching plan and Prerequisites and Next steps
  • Package specification

Theory of Advanced Lemaitre damage model

Theory

The theory assumes that the state of damage at any material point is isotropic and is represented by a single scalar internal variable, D, associated with the fraction of load carrying area across any surface at that point. The damage variable assumes values between 0 (for the undamaged material) and 1 (for the completely damaged material).

The evolution of the damage internal variable is assumed to be governed by the relation:

The effect of damage on plastic behaviour can be presented by von Mises yield function:

where \dot{\gamma }  is the accumulated plastic strain, r, s are material constants, The quantity

and Y, is the damage energy release rate, with E and n denoting, respectively, Young’s modulus and Poisson’s ratio of the undamaged material.

For the crack closure effect; the compressive/tensile additive split of the stress tensor:

where \sigma ^{+} and \sigma ^{-}  are, respectively, the tensile and compressive components of \sigma. The numerical prediction of material degradation, based on the damage model without crack closure effects, is not in agreement with experimental evidence, which shows that only a relatively small damage accumulation results from the process.

The theory required for the implementation of the ductile damage model according to the modified Lemaitre model  will be presented

Implementation of VUMAT subroutine in Abaqus

Implementation

This section yields to describe an algorithm for the implementation of the elastic-plastic-damage constitutive equations including the effect of crack closure. Algorithms based on the operator split concept, resulting in the standard elastic predictor/plastic corrector format, are widely used in computational plasticity. The flow chart of the elastic predictor/return mapping algorithm for the elastic-plastic-damage model is implemented as shown in figure 1 based on article titled” Numerical analysis of damage evolution in ductile solids“:

Figure 1: Flow chart of elastic predictor/return mapping algorithm for the elastic-plastic-damage model.

Writing VUMAT Subroutine

VUMAT Subroutine

To introduce the ductile damage model, a user material subroutine VUMAT is developed in ABAQUS software package. In the VUMAT subroutine, the damage variable will be calculated in each the integration points (or Gauss points) locally. The element deletion option is used with VUMAT to induce ductile crack growth. The developed VUMAT subroutine has the ability to analyze ductile damage in three-dimensional and plane strain cases. 3D and 2D plane strain problems. According that the VUMAT subroutine is run in the ABAQUS/Explicit, it can be used in various problems that require complex contact algorithms. How to run the VUMAT subprogram in ABAQUS will be explained in this section for loading in simple models, such as one element.

VUMAT Subroutine verification

Verification VUMAT Subroutine

Validation and verification of the numerical implementation will be evaluated in various examples. The ductile damage model has been verified by solving two numerical examples using ABAQUS/Explicit in two- and three-dimensional solid elements. The first example is the simulation of a two- and three-dimensional tensile test on a specimen subjected to monotonic axial loading. In the second example, the simulation of a three-point bending test is investigated (figure 2). The stability, convergence, and accuracy of the results in these two examples are also evaluated.

Figure 2: Comparison of experimental crack initiation location in three-point bending test

Application of VUMAT subroutine

Application of the VUMAT Subroutine

The modified ductile damage model can be used to predict prediction of damage growth and failure in various mechanical processes. For example; the modified ductile damage model is applied to predict initiation of the micro-void as a central burst along the bar axis during the forward extrusion (Figure 3), and prediction of fracture initiation area in the upsetting test of tapered axisymmetric specimen (Figure 4).

Figure 3: Prediction of central burst along the bar axis during the forward extrusion

Figure 4: Evolution of damage in tapered axisymmetric specimen

What is the Lemaitre damage model?

This model is a model whose hardening is isotropic and rate-dependent. Also, the yield is based on the von Mises criterion, which is combined with the Lemaitre damage model.

Is the Lemaitre damage model very different from the ductile damage models? And what is the difference between them?

Yes, this model is different from the normal damage model that exists in ABAQUS and other software. In the Lemaitre damage model, yielding and plasticization occur simultaneously with damage, but in the normal models that exist, the damaged area and the plasticity area are two separate areas.

Additional information
Expert

Produced in Partnership Plan

Included

.cae, .for, .inp, .jnl, .odb, .pdf

Tutorial video duration

140 Minutes

language

English

Level

Advanced

Package Type

Training

Software version

Applicable to all versions

Subtitle

English

Reviews (0)

Reviews

There are no reviews yet.

Be the first to review “Ductile Damage Abaqus model for 3D continuum element (VUMAT Subroutine)” Cancel reply

You must be logged in to post a review.

Shipping and Delivery

All the package includes Quality assurance of training packages. According to this guarantee, you will be given another package if you are not satisfied with the training, or your money is returned. Get more information in terms and conditions of the CAE Assistant.
All packages include lifelong support, 24/7 support, and updates will always be sent to you when the package is updated with a one-time purchase. Get more information in terms and conditions of the CAE Assistant.

Notice: If you have any question or problem you can contact us.
Ways to contact us: WhatsApp/Online Support/[email protected]/ contact form.
Projects: Need help with your project? You can get free consultation from us here.

You can buy this package in two ways

  • Online payment: with MasterCard, VisaCard and etc.
  • Offline payment: In this payment method, you should pay via PayPal and send your payment receipt as an attached file in the offline payment form.

How to send the package

  • via download link After purchase, a download link will be sent to you a zip file included training videos, documents and software files.

How to watch the tutorial videos

  • Send us your machine ID

To access tutorial video run the .exe file on your personal pc and send the generated code to [email protected] and wait for your personal code, which is usable only for that pc, up to 24 hours from CAE Assistant support.

Here you can see the purchase process of packages: Track Order

SKU: msh01 Categories: Civil Engineering, Dynamic Analysis, Fracture/Failure, Subroutine Tags: ABAQUS, abaqus toturial collections, Damage, Lemaitre, plasticity, SUBROUTINE, VUMAT

You may also like…

3D continuum Composite Damage | Progressive hashin damage
3D continuum Composite Damage in ABAQUS
Close

3D continuum Abaqus HASHIN progressive Damage for composite materials (VUMAT Subroutine)

Rated 5.00 out of 5
€ 320
This tutorial teaches how to simulate damage in 3d continuum composite materials in ABAQUS. As you know, Abaqus does not have any material model for 3d composite materials. So, the user needs to write a customized subroutine to simulate damage initiation and progressive damage for composite materials in ABAQUS. In this package, one of the most practical damage initiation criteria (Hashin) is used to detect failure. It should be mentioned that this subroutine includes gradual progressive damage based on the energy method. This complex subroutine could be used for static and dynamic problems.
Add to wishlist
Add to cart
Quick view
Addresses
Carrer de Jaume II ,46015,Valencia ,Spain
REON INTERNATIONAL GROUP LTD, 21 Hill Street, Unit 5, Haverfordwest, Dyfed, United Kingdom, SA61 1QQ (Sales Representative)
Enviroflex GmbH, Sterngasse 3/2/6 1010, Vienna, Austria (Sales Representative)
With our assistance, consider your simulation project is done; we brought together a set of services and tutorial material to meet all your needs in CAE.
Links
  • Contact Us
  • Privacy Policy
  • Terms & Conditions
  • Cookie Policy
  • Join Us
  • FAQs
  • Site Map
  • CAE Assistant All Rights Reserved
    • Menu
    • Categories
    • Package Shop
      • Mechanical Engineering
        • Forming
        • Dynamic Analysis
        • Fracture/Failure
        • Fatigue
        • Impact
        • Composite
        • Cohesive
      • Civil Engineering
        • Acoustic and shock analyses
        • Buckling and post buckling
        • Geostatic
      • Special OffersHot
        • Free Packages
      • Coding/Utility
        • Subroutine
        • Scripting
        • Utility
    • Blog
      • Abaqus Tutorial & CoursesNew
      • Article
      • Questions and Answers
      • Video Gallery
    • Full PackagesTo be Expert
    • For Business/Academy
    • About Us
      • Our Portfolio
      • Our Company
    • Package Shop
      • Mechanical Engineering
        • Forming
        • Dynamic Analysis
        • Fracture/Failure
        • Fatigue
        • Impact
        • Composite
        • Cohesive
      • Civil Engineering
        • Acoustic and shock analyses
        • Buckling and post buckling
        • Geostatic
      • Special OffersHot
        • Free Packages
      • Coding/Utility
        • Subroutine
        • Scripting
        • Utility
    • Blog
      • Abaqus Tutorial & CoursesNew
      • Article
      • Questions and Answers
      • Video Gallery
    • Full PackagesTo be Expert
    • For Business/Academy
    • About Us
      • Our Portfolio
      • Our Company
    • Wishlist
    • Login / Register
    Shopping cart
    close
    Our Spring Sale Has Started

    You can see how this popup was set up in our step-by-step guide: https://wppopupmaker.com/guides/auto-opening-announcement-popups/

    Sign in

    close

    Lost your password?
    Or login with
    Facebook
    Google

    No account yet?

    Create an Account
    We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkPrivacy policy