Showing 1–12 of 15 results

Advanced UMAT Subroutine (VUMAT Subroutine) – Abaqus UMAT tutorial

 290
This training package helps Abaqus users to prepare complex UMAT and VUMAT subroutines. This Abaqus UMAT tutorial package is suitable for those who are familiar with subroutine or want to learn UMAT/VUMAT subroutine Professionally. Equations for computational plasticity based on kinematic stiffness are also discussed. In addition, metal damage has been implemented based on Johnson Cook's model. Watch Demo

Cohesive simulation for experts

 380
This educational package is used for experts in cohesive field simulation. This package includes simulation of elastic and damage area by Abaqus capabilities, Using UMAT subroutine for elastic and damage region and simulation of cohesive fatigue with USDFLD subroutine

Composite Fatigue Simulation with UMAT Subroutine in ABAQUS (unidirectional)

 420
The composite fatigue training package completely teaches how to simulate and analyze a fatigue composite model with the help of UMAT Subroutine in Abaqus software. In this training package, we have provided all the files needed for your training, including articles, theories, how to write subroutines, and software settings.

Composite Pressure Vessel simulation in ABAQUS

 420
This training package professionally provides tips for designing and simulating composite pressure vessels. In this package, various winding methods of simulation methods of composite pressure vessels are presented. This training package teaches scripting for automatic simulation of composite pressure vessels with three methods of geodetic,isotensoid, and planar winding. UMAT subroutine is also examined to identify the failure initiation and continuation of the failure based on a PUCK criterion.

Composite simulation for experts-Part-2

 1460

If you are a researcher, student, university professor, or  Engineer in the company in the field of composite materials, this training package in simulating these materials in Abaqus software is the best selection. This training package is the second part of the composite for expert package and is focusing on the Simulation of woven composite damage in Abaqus, Composite Fatigue Simulation, Analysis of Composite pressure vessel with Semi-Geodesic winding,  Simulation of composite Hashin damage in 3d continuum element  (UMAT-VUMAT-USDFLD), and  Abaqus composite modeling of Woven & Unidirectional + RVE method.

 

Simulation of composite Hashin damage in 3d continuum element in Abaqus (UMAT-VUMAT-USDFLD)

 250
In this training package, the 3D continuum HASHIN damage initiation model is prepared via three subroutines (USDFLD, UMAT and VUMAT).This training package teach you subroutines line-by-line. It should be noted that after damage initiation, failure occurs suddenly and in the form of a reduction in properties in the model. The HASHIN theory for this package is based on Kermanidis article titled” FINITE ELEMENT MODELING OF DAMAGE ACCUMULATION IN BOLTED COMPOSITE JOINTS UNDER INCREMENTAL TENSILE LOADING “.

Composite simulation for experts-Part-1

 930
If you are a graduate or Ph.D. student, if you are a university professor or an expert engineer in the industry who deals with simulation software, you are definitely familiar with the limitations of this software in defining the material properties, loading or meshing, interaction properties, and etc. You have certainly tried to define the properties of materials based on advanced fracture theories in finite element software and are familiar with their limitations and problems. Now, here is your solution. Start writing subroutines in finite element software and overcome the limitations. With the tutorials in the Golden Package, you will learn how to write 8 subroutines in Abaqus software professionally.

UMAT Subroutine (VUMAT Subroutine) introduction

 190

[optin-monster slug="khin3hlh6o8vag5wx9gj" followrules="true"]This package is usable when the material model is not available in ABAQUS software. If you follow this tutorial package, including standard and explicit solver, you will have the ability to write, debug and verify your subroutine based on customized material to use this in complex structures. These lectures are an introduction to write advanced UMAT and VUMAT subroutines in hyperelastic Martials, Composites and Metal and so on.

Watch Demo

Additive manufacturing simulation with Abaqus subroutine & python | 3D printing Python

 350
The process of building a three-dimensional object from a CAD model or digital 3D model is known as additive manufacturing or 3D printing. In an additive process, an object is made by adding layers of material one after another until the product is made. This package will teach you additive manufacturing or 3d printing simulation based on the use of subroutines and Python scripting and was done by a team with the goal of coding all the steps of 3D printing.

Simulation of composite Puck damage in 3d continuum element in Abaqus (UMAT-USDFLD-VUMAT)

 250
In this training package, the 3D continuum puck damage initiation model is prepared via three subroutines (USDFLD, UMAT and VUMAT).This training package teach you subroutines line-by-line. It should be noted that after damage initiation, failure occurs suddenly and in the form of a reduction in properties in the model.

Composite simulation for experts-Part-3

 1340
If you are a graduate or Ph.D. student, if you are a university professor or an expert engineer in the industry who deals with simulation software, you are definitely familiar with the limitations of this software in defining the material properties, loading or meshing, interaction properties, and etc. You have certainly tried to define the properties of materials based on advanced fracture theories in finite element software and are familiar with their limitations and problems. Now, here is your solution. Start writing subroutines in finite element software and overcome the limitations. With the tutorials in the Golden Package, you will learn how to write 8 subroutines in Abaqus software professionally.

Composite pressure vessel analysis with Semi-Geodesic winding

 400
This training package includes UMAT subroutine with Fortran language to identify progressive Puck failure and Python scripting for automatic modeling.