• Support[@]caeassistant.com
  • Contact Us
CAE Assistant CAE Assistant
Select category
  • Select category
  • Acoustic and shock analyses
  • Beginner's Packages
  • Beginners
  • Buckling and post buckling
  • CFD
  • Civil Engineering
  • Cohesive
  • Composite
  • Concrete Reinforcement
  • Dynamic Analysis
  • Explosion
  • Fatigue
  • Forming
  • Fracture/Failure
  • Free Packages
  • Full Packages
  • Geostatic
  • Heat Transfer
  • Impact
  • Mechanical Enginerring
  • Membership
  • New-Products
  • Optimization
  • Payment
  • Pre-Order
  • Scripting
  • Subroutine
  • Thermal mechanical Analysis
  • Training Package
  • Uncategorized
  • Utility
Menu
CAE Assistant CAE Assistant
0 items / € 0
0 Wishlist
  • Package Shop
    • Mechanical Engineering
      • Forming
      • Dynamic Analysis
      • Fracture/Failure
      • Fatigue
      • Impact
      • Composite
      • Cohesive
    • Civil Engineering
      • Acoustic and shock analyses
      • Buckling and post buckling
      • Geostatic
    • Special OffersHot
      • Free Packages
    • Coding/Utility
      • Subroutine
      • Scripting
      • Utility
  • Blog
    • Abaqus Tutorial & CoursesNew
    • Article
    • Questions and Answers
    • Video Gallery
  • Full PackagesTo be Expert
  • For Business/Academy
  • About Us
    • Our Portfolio
    • Our Company
Login / Register
0 Wishlist
0 items / € 0
DFLUX subroutine in ABAQUS-Front
DFLUX subroutine in ABAQUS-package
HomeSubroutine DFLUX Subroutine (VDFLUX Subroutine) in ABAQUS
Produced in Partnership Plan

DFLUX Subroutine (VDFLUX Subroutine) in ABAQUS

Rated 5.00 out of 5 based on 8 customer ratings
(8 customer reviews)

€ 140

DFLUX subroutine (VDFLUX Subroutine) is used for thermal loading in various body flux and surface flux states in heat transfer and temperature displacement solvers when flux load is a function of time, place, or other parameters. In this package, you will learn “when do you need to use this subroutine?”, “how to use the DFLUX subroutine”, “what is the difference between DFLUX & VDFLUX?”, “how to convert DFLUX to VDFLUX and vice versa?”, and “How to use it in an example?”. Three workshops are presented so you can learn all these stuff in action: Simulation of welding between two plate with DFLUX subroutine, Simulation of Arc welding between two tube with DFLUX, and Simulation of different types of functional heat flux(Body-surface-Element) in plate with Johnson-cook plasticity with VDFLUX subroutine(Thermomechanical Analysis).

Add to wishlist
  • Description
  • Additional information
  • Reviews (8)
  • Shipping and Delivery
Description

DFLUX subroutine (VDFLUX Subroutine) in ABAQUS

First of all, let’s define the word flux; Any effect that seems to pass through or move through a surface or substance is referred to as a flux, whether it actually flows or not. For example, when you say heat flux it means the heat energy passes through something. In the engineering world, we must define these fluxes with formulas. They can be a function of time, displacements, temperature, etc.

In the Abaqus, when we want to define a nonuniformly distributed flux in a heat transfer or mass diffusion analysis, which may have a complicated formula and be a function of some parameters such as time and displacement, the DFLUX & VDFLUX subroutines come to your aid. One of the most important applications of DFLUX is in coding and defining the moving heat flux in Abaqus. There is a moving heat flux in problems such as fusion welding.

When we can use DFLUX & VDFLUX subroutine in Abaqus?

In all Steps in the Abaqus where there is heat transfer, we can use DFLUX and VDFLUX subroutines. These Steps are “Coupled temp-displacement”, “Coupled thermal-electric”, “Coupled thermal-electrical-structural”, “Dynamic, Temp-Disp, Explicit”, “Heat transfer”, and “Mass diffusion”.

The types of elements we can use for this subroutine are first-order heat transfer, first-order coupled temperature-displacement, first-order coupled thermal-electrical-structural, and mass diffusion elements.

In this tutorial, firstly, in the lesson, some main points about the DFLUX subroutine introduction are presented, and the VDFLUX subroutine for the explicit solver is also introduced. In the next three workshops, you can learn to write these useful subroutines in the example and get more information about their applications like welding simulation.

It would be useful to see Abaqus Documentation to understand how it would be hard to start an Abaqus simulation without any Abaqus tutorial.

Get more basic information about Abaqus subroutine writing

The Abaqus user subroutine allows the program to be customized for particular applications unavailable through the main Abaqus facilities. You should write a user subroutine if you could not run your analysis by ABAQUS built-in models for materials, loads, properties, elements, etc., for example, if you need to model a user-defined nonlinear stress-strain relation, which is not provided by Abaqus, then look for UMAT user subroutine. A more advanced subroutine is DFLUX, which allows the creation of user-defined load flux. If it is your first time writing a subroutine like DFLUX, please read the Start Writing an Abaqus Subroutine: Basics & Recommendations article. After reading this post and watching this tutorial’s demo video, you will definitely decide to save time in Abaqus modelling and get this Abaqus Welding manual package. If you have questions, ask here on our live chat on the left side of this page.

Some examples of DFLUX & VDFLUX usage:

  1. A research was done to observe the Asphalt pavement behavior under cyclic temperature when a reflective crack is applied. The researchers used the ABAQUS subroutines such as the DFLUX and FILM. The DFLUX subroutine calculated the temperature distribution in the pavement structure.
  2. Laser cladding provides numerous advantages over the traditional, ad-hoc, and imprecise deposition techniques for the repair of critical structural components such as dies and molds used in cold working industries. A numerical analysis was presented to determine the hardness and residual stresses of multi-layered cladding for applications of die repair. This analysis was implemented by the ABAQUS subroutine. The DFLUX subroutine applied the heat load.
  3. Selective Laser Method (SLM) is one of the 3D printing methods. It uses a high-power laser to melt compositions of metallic feedstock from a powder bed. Large residual stresses can be produced in the components that are manufactured by the selective laser melting (SLM) process when high cooling rates are used. For industrial users of this technology, understanding how residual stress develops during the process and coming up with solutions for in-situ reduction continue to be challenges. Understanding the impact of SLM process parameters on the underlying phenomenon of residual stress build-up necessitates computationally effective FEA models that are realistic of the process dynamics (temperature evolution and associated solidification behavior). An article was published that developed a model to assess residual stresses in selective laser-melted Ti6Al4V. The investigators simulated the model with the ABAQUS software and the DFLUX subroutine. They used the subroutine to write a moving volumetric heat source program to simulate the laser.
  4. In a study, a simulation for metal sheets with different compositions is created, and then a mathematical model for laser welding is built. A simulation of the continuous disk laser welding process is used to join copper and stainless-steel types 304. A FORTRAN-programmed DFLUX subroutine is used to embed six alternative heat flux distribution models into the Abaqus/Standard solver for this purpose.
  5. In an investigation, residual stresses (RS) caused by the laser-assisted machining of AISI-4340 are examined in relation to laser power. Different levels of laser power were simulated using finite element modeling. Using the DFLUX subroutine, the effects of laser preheating were first modeled, and then orthogonal cutting simulations were run using ABAQUS/Explicit. For model validation, experimental RS data were used. AISI 4340 orthogonal cutting was modeled using FEM utilizing the FE program Abaqus. First, the FORTRAN user procedure DFLUX was used to model the effects of laser preheating. Following that, Lagrangian FE simulations of planar strain were performed, and RS was predicted. By contrasting them with experimental data made under comparable circumstances, the laser preheating effects and the expected RS were confirmed.
  6. Due to its excellent efficiency and weld quality, hybrid laser arc welding (HLAW) has attracted increasing interest from both industry and academic laboratories. The purpose of the current research is to create a nonlinear finite element method for forecasting the residual stress and weld-induced deflection of semi-industrial scale stiffened panel. A truncated cone Gaussian mathematical model is merged with Goldak’s double-ellipsoid mathematical model to simulate the laser source in the unique hybrid heat source. In order to simulate the volumetric heat flux distributions of the HLAW process, a three-dimensional coupled thermo-elastic-plastic finite element model has been created utilizing ABAQUS and a Fortran-coded extra numerical subroutine of DFLUX.
  7. The buildup of high temperature between the last and following weld passes is one of the key elements affecting weld joints produced by multi-pass welding (Interpass temperature). As a result, the weld’s mechanical performance will suffer, which will increase the likelihood of failure. Consequently, it is essential to manage the interpass temperature to improve the dependability of the weld joints created utilizing several weld passes. The thermal distribution, residual strains, and interpass temperature resulting from the three-pass TIG welding of Al 2219 are examined in an investigation using the finite element approach. The distributed power density of the moving weld torch was simulated using DFLUX user subroutine code.
  8. When conventional methods are prohibitively expensive or labor-intensive to use, complex metal products with superior material can be manufactured by combining additive manufacturing principles with electron beam (EB) technology. To increase the efficiency and dependability of the Electon Beam Melting (EBM) FE simulation, a new style of modeling for energy source and powder material properties has been presented in a study and integrated with a thermal numerical model. In order to automatically determine the powder properties as temperature functions, take into account the beam’s position during scanning, and account for the material states changing from powder to liquid during melting and from liquid to solid during cooling, several specific subroutines have been developed. The heat flux on the layer’s top surface has been applied using an Abaqus DFLUX user subroutine. The movement of the beam causes this flux’s location to shift over time. The flux distribution is defined as a function of position and time using the DFLUX subroutine.

Preview

  • What do we learn from this package?
  • Teaching plan and Prerequisites and Next steps
  • Package specification

You can watch demo here.

Watch Video

When do you need to use a DFLUX or VDFLUX Subroutines?

  • What are the uses of these subroutines?
  • When can it be used?
  • How does this subroutine work?

How to use DFLUX and VDFLUX subroutines?

  • Where is the subroutine block?
  • Which variable is required and which is optional?
  • What are the variables of subroutines?

What is the difference between DFLUX and VDFLUX subroutines?

  • What is the difference between these two subroutines?
  • Which is better to use for each example?

How to convert DFLUX to VDFLUX and vice versa?

  • What are the differences between the names of variables?
  • How to change a DFLUX subroutine to VDFLUX and vice versa?

How to use in example step by step?

  • What is the settings in ABAQUS/CAE for DFLUX?
  • What is the settings in ABAQUS/CAE for VDFLUX?

Workshop 1: Simulation of welding between two plate with DFLUX subroutine (Heat transfer Analysis)

  • Problem description
  • Goldac theory
  • Writing subroutine line be line
  • Simulation of problem in GUI

Workshop 2: Simulation of Arc welding between two tube with DFLUX subroutine (Thermomechanical Analysis)

  • Problem description
  • Theory of arc welding based on Goldac theory
  • Writing subroutine line by line
  • GUI setting for problem

Workshop 3: Simulation of different types of functional heat flux(Body-surface-Element) in plate with Johnson-cook plasticity with VDFLUX subroutine(Thermomechanical Analysis)

  • Problem description
  • writing subroutine line by line
  • GUI setting for surface flux(full surface/ selected surface)
  • GUI setting for body flux(full body/ selected body)
  • GUI setting for element-based flux(selected element/ selected element surface)
Additional information
Expert

Produced in Partnership Plan

Included

.cae, .for, .inp, .jnl, .odb, .pdf

Tutorial video duration

160+ Minutes

language

English

Level

Advanced

Package Type

Training

Software version

Applicable to all versions

Subtitle

English

Reviews (8)

8 reviews for DFLUX Subroutine (VDFLUX Subroutine) in ABAQUS

  1. Rated 5 out of 5

    Lucas Tremblay – January 17, 2022

    This package helped me to easily simulate welding in Abaqus via DFLUX subroutine. Great support! Great videos!

    1 product
  2. Rated 5 out of 5

    Patricia Brown – January 23, 2022

    I think I found the best training videos and files for these two subroutines in this package. The examples implemented in this package were advanced. So, I could use it to simulate my project.

    1 product
  3. Rated 5 out of 5

    jackson – November 19, 2022

    Hello, Thank you for putting welding workshops into this subroutine. This is one of the most common uses of this subroutine.

  4. Rated 5 out of 5

    simon – November 23, 2022

    I liked the categorization. But isn’t there a preview or something like that before I buy it? I think it is necessary for every training package.

  5. Rated 5 out of 5

    nila._.son – November 28, 2022

    Why there aren’t some practice examples in this package and other packages? I think it would be great if you put some exercise in your packages.

  6. Rated 5 out of 5

    tina.salmon – December 5, 2022

    Great tutorial videos with English subtitles. You cannot find something like this, well organized on YouTube.

  7. Rated 5 out of 5

    claos – December 19, 2022

    Two of the three workshops are for welding. Why? What is the other use of this subroutine? Why there aren’t workshops for them as well?

  8. Rated 5 out of 5

    nina.smith – December 28, 2022

    Why don’t you put some of the package free so we know what we are buying?

Add a review Cancel reply

You must be logged in to post a review.

Shipping and Delivery

All the package includes Quality assurance of training packages. According to this guarantee, you will be given another package if you are not satisfied with the training, or your money is returned. Get more information in terms and conditions of the CAE Assistant.
All packages include lifelong support, 24/7 support, and updates will always be sent to you when the package is updated with a one-time purchase. Get more information in terms and conditions of the CAE Assistant.

Notice: If you have any question or problem you can contact us.
Ways to contact us: WhatsApp/Online Support/[email protected]/ contact form.
Projects: Need help with your project? You can get free consultation from us here.

You can buy this package in two ways

  • Online payment: with MasterCard, VisaCard and etc.
  • Offline payment: In this payment method, you should pay via PayPal and send your payment receipt as an attached file in the offline payment form.

How to send the package

  • via download link After purchase, a download link will be sent to you a zip file included training videos, documents and software files.

How to watch the tutorial videos

  • Send us your machine ID

To access tutorial video run the .exe file on your personal pc and send the generated code to [email protected] and wait for your personal code, which is usable only for that pc, up to 24 hours from CAE Assistant support.

Here you can see the purchase process of packages: Track Order

SKU: AC5671 Categories: Subroutine, Thermal mechanical Analysis Tags: ABAQUS, abaqus toturial collections, DFLUX, SUBROUTINE, welding
Addresses
Carrer de Jaume II ,46015,Valencia ,Spain
REON INTERNATIONAL GROUP LTD, 21 Hill Street, Unit 5, Haverfordwest, Dyfed, United Kingdom, SA61 1QQ (Sales Representative)
Enviroflex GmbH, Sterngasse 3/2/6 1010, Vienna, Austria (Sales Representative)
With our assistance, consider your simulation project is done; we brought together a set of services and tutorial material to meet all your needs in CAE.
Links
  • Contact Us
  • Privacy Policy
  • Terms & Conditions
  • Cookie Policy
  • Join Us
  • FAQs
  • Site Map
  • CAE Assistant All Rights Reserved
    • Menu
    • Categories
    • Package Shop
      • Mechanical Engineering
        • Forming
        • Dynamic Analysis
        • Fracture/Failure
        • Fatigue
        • Impact
        • Composite
        • Cohesive
      • Civil Engineering
        • Acoustic and shock analyses
        • Buckling and post buckling
        • Geostatic
      • Special OffersHot
        • Free Packages
      • Coding/Utility
        • Subroutine
        • Scripting
        • Utility
    • Blog
      • Abaqus Tutorial & CoursesNew
      • Article
      • Questions and Answers
      • Video Gallery
    • Full PackagesTo be Expert
    • For Business/Academy
    • About Us
      • Our Portfolio
      • Our Company
    • Package Shop
      • Mechanical Engineering
        • Forming
        • Dynamic Analysis
        • Fracture/Failure
        • Fatigue
        • Impact
        • Composite
        • Cohesive
      • Civil Engineering
        • Acoustic and shock analyses
        • Buckling and post buckling
        • Geostatic
      • Special OffersHot
        • Free Packages
      • Coding/Utility
        • Subroutine
        • Scripting
        • Utility
    • Blog
      • Abaqus Tutorial & CoursesNew
      • Article
      • Questions and Answers
      • Video Gallery
    • Full PackagesTo be Expert
    • For Business/Academy
    • About Us
      • Our Portfolio
      • Our Company
    • Wishlist
    • Login / Register
    Shopping cart
    close
    Our Spring Sale Has Started

    You can see how this popup was set up in our step-by-step guide: https://wppopupmaker.com/guides/auto-opening-announcement-popups/

    Sign in

    close

    Lost your password?
    Or login with
    Facebook
    Google

    No account yet?

    Create an Account
    We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkPrivacy policy