Machine Learning for Composite Materials with Abaqus

 420.0

This tutorial package delves into an advanced inverse modeling approach for predicting carbon fiber properties in composite materials using a machine learning (ML) technique. Specifically, it covers the use of Gaussian Process Regression (GPR) to build a surrogate model for accurate predictions of fiber properties based on data from unidirectional (UD) lamina. By leveraging Finite Element (FE) homogenization, synthetic data is generated for training the GPR model, accounting for variations in fiber, matrix properties, and volume fractions. This framework’s efficiency and accuracy are validated using real-world data, highlighting its potential as a computational alternative to traditional experimental methods. The package includes detailed explanations, case studies, and practical exercises, equipping users with hands-on experience in applying this ML-based approach to composite material analysis.

An Efficient Stiffness Degradation Composites Model with Arbitrary Cracks | An Abaqus Simulation

 0.0
(4)
Composite materials are critical in high-performance applications due to their exceptional strength-to-weight ratios and customizable properties. They are widely used in aerospace, automotive, and civil engineering. However, their complex structure makes them susceptible to various damage mechanisms, such as tunnel cracking and delamination, which can significantly affect their structural integrity. Accurate damage prediction is essential for effective use and maintenance. Traditional methods often rely on extensive experimental testing, but finite element analysis (FEA) has become a valuable alternative. Abaqus is particularly effective for modeling composite damage due to its comprehensive material modeling and customizable subroutines. The research presented utilizes Abaqus to develop a model for predicting Stiffness Degradation Composites laminates with arbitrarily oriented cracks, offering valuable insights into damage progression and stiffness loss under various loading conditions. To achieve this, UEL, UMAT, and DISP subroutines are used. Additionally, a Python script is provided to import the model into Abaqus.  

UHPFRC (Ultra-High-Performance Fiber Reinforced Concrete) structures in Abaqus

 210.0
(1)
UHPFRC (Ultra-High-Performance Fiber Reinforced Concrete) structures have emerged as a groundbreaking innovation in construction. These structures offer exceptional strength, durability, and performance, revolutionizing the industry. UHPFRC incorporates a precise combination of Portland cement, fine aggregates, admixtures, and steel or synthetic fibers, resulting in an extraordinarily dense and robust composite material. With compressive strengths exceeding 150 MPa, UHPFRC structures exhibit enhanced resistance to cracking, increased load-bearing capacity, and improved durability against environmental factors such as corrosion and freeze-thaw cycles. The superior mechanical properties of UHPFRC enable the design of slimmer and lighter elements, leading to reduced material consumption and more sustainable construction practices. UHPFRC structures find applications in various fields, including bridges, high-rise buildings, marine structures, and precast elements, offering long-term performance and contributing to the advancement of modern construction. In this package, you will learn how to simulate these structures with many practical examples.

Simulation of Unidirectional Composite Damage in ABAQUS

 130.0
(13)
This package is about Unidirectional Composite Damage tutorial and applies various theories to initiate and progress damage in composite materials based on ABAQUS capabilities for different elements. As you know, according to the modeling done by the micro or macro method, the way of defining the Abaqus composite damage completely follows the separate method in ABAQUS. This training package is customized for Abaqus composite macro modeling. There are 5 different unidirectional composite examples to help you master unidirectional composite simulations and Abaqus composite laminate damage modeling. You can see the examples in the syllabus below.

Composite Damage Models Bundle

 0.0 1023.0
Master the Art of Composite Damage Analysis: Composite Damage Models Bundle The Composite Damage Models Bundle equips you with the