Abaqus convergence tutorial | Introduction to Nonlinearity and Convergence in ABAQUS

 120.0

This package introduces nonlinear problems and convergence issues in Abaqus. Solution convergence in Abaqus refers to the process of refining the numerical solution until it reaches a stable and accurate state. Convergence is of great importance especially when your problem is nonlinear; So, the analyst must know the different sources of nonlinearity and then can decide how to handle the nonlinearity to make solution convergence. Sometimes the linear approximation can be useful, otherwise implementing the different numerical techniques may lead to convergence.

Through this tutorial, different nonlinearity sources are introduced and the difference between linear and nonlinear problems is discussed. With this knowledge, you can decide whether you can use linear approximation for your nonlinear problem or not. Moreover, you will understand the different numerical techniques which are used to solve nonlinear problems such as Newton-Raphson.

All of the theories in this package are implemented in two practical workshops. These workshops include modeling nonlinear behavior in Abaqus and its convergence study and checking different numerical techniques convergence behavior using both as-built material in Abaqus/CAE and UMAT subroutine.

Expert

Included

.inps,video files, Fortran files (if available), Flowchart file (if available), Python files (if available), Pdf files (if available)

Tutorial video duration

90 Minutes

language

English

Level

Package Type

Software version

Applicable to all versions

Subtitle

English

Add-on

The option's price will be set post-order, requiring negotiation with support for confirmation.

The option's price will be set post-order, requiring negotiation with support for confirmation.
Product price:  120.0
Total options:
Order total:
46 People watching this product now!

Frequently Bought Together

Abaqus convergence tutorial + UMAT subroutine | Learn UMAT Abaqus | Umat Abaqus course + Abaqus Course for beginners - FEM simulation tutorial - FEA simulation + +
Price for all: Original price was: € 934.0.Current price is: € 700.5. Save  233.5
Description

Abaqus convergence tutorial

Mastering convergence is crucial for getting accurate results from your Abaqus simulations, especially when dealing with nonlinear problems. This Abaqus convergence tutorial dives deep into the theory behind convergence and equips you with the skills to tackle it. You’ll learn how to identify different sources of nonlinearity and explore how they impact convergence. The practical workshops will guide you through simulating nonlinear behavior and investigating the convergence behavior of various numerical techniques, like Newton-Raphson and Quasi-Newton. By the end, you’ll be confident in achieving stable and reliable solutions for your complex Abaqus analyses.

Introduction

Most engineers and scientists studying physical phenomena are involved with two major tasks:

  1. Mathematical formulation of the physical process
  2. Numerical analysis of the mathematical model

Among the different numerical methods, Finite Element Method (FEM) has become an essential tool for engineers and designers as it offers numerous benefits and advantages over traditional methods of problem-solving. These advantages include:

  • Accurate and Precise Results
  • Time-Saving
  • Cost-Effectiveness
  • Versatility
  • Optimization
  • Future-Proofing

Abaqus is a powerful finite element analysis (FEA) software that can be used to solve a wide variety of engineering problems. These problems can range from simple linear problems, such as calculating the stress in a beam under a load, to complex nonlinear problems, such as simulating the collapse of a building under an earthquake.
Nonlinear problems in Abaqus encompass a wide range of physical phenomena that exhibit a departure from linear behavior. These problems involve material or system responses that are not proportional to the applied loads, resulting in complex and often unpredictable outcomes.

In Abaqus, nonlinear problems are characterized by material properties or boundary conditions that vary with deformation, load magnitude, or other parameters.

One of the critical aspects of using Abaqus is ensuring the convergence of the solution, which is the process of reaching a stable and accurate result. In Abaqus, convergence is typically measured by monitoring the residuals of the governing equations, such as the force balance and the displacement equilibrium. The residuals represent the imbalance in the equations and should decrease as the solution converges. Here we want to provide a comprehensive understanding of solution convergence in Abaqus and its importance. (Abaqus convergence tutorial)

What is Convergence in FEA?

Solution convergence in Abaqus is a critical aspect of numerical simulation to ensure the accuracy and reliability of the results. Convergence refers to the process by which the solution approaches a consistent and stable value as the simulation progresses.

In FEA “convergence” can imply multiple meanings such as:
• Mesh convergence
• Time integration accuracy
• Convergence of nonlinear solution procedure
• Solution accuracy

Each one of these convergence meanings is completely discussed in this chapter. (Abaqus convergence tutorial)(Abaqus convergence tutorial)(Abaqus convergence tutorial)(Abaqus convergence tutorial)

What is a Nonlinear problem?

Nonlinear problems are those in which the material behavior or the loading conditions are not linear. This means that the relationship between stress and strain is not a straight line, or that the loading conditions vary throughout the analysis.

Nonlinear problems are an important part of engineering analysis. Abaqus provides a powerful set of tools that can be used to solve a wide variety of nonlinear problems. By understanding the different types of nonlinear problems and the tools available in Abaqus, users can successfully solve even the most complex nonlinear problems.

There are three common sources of nonlinearity:

  • Geometry

These arise when the deformation of a structure significantly alters its geometry, affecting the load paths and deformation patterns. For example, the buckling of a slender beam or the large-scale deformation of a soft tissue.

  • Material

These involve materials with stress-strain relationships that are nonlinear, such as plastic deformation of metals, creep of polymers, or strain softening of concrete.

  • Boundary

Occurring when surfaces interact, leading to complex contact forces and deformation patterns. These are often encountered in simulations involving friction, impact, or assembly processes.

Various types of nonlinearities will be discussed through simple examples in this chapter.

Properties of Linear and Nonlinear Problems

Linear and nonlinear problems are two broad categories of mathematical and scientific problems that are encountered in various fields such as physics, engineering, economics, and computer science. The distinction between these two types of problems lies in the nature of the relationships between the variables involved. Understanding the properties of linear and nonlinear problems is crucial for selecting appropriate methods and techniques to solve them.

Linear problems have the following features:

  • Existence

For each load F there will always be at least one solution u.

  • Uniqueness

For each F there will always be only one solution u!

  • Scaling

If F causes a displacement u, then aF causes a displacement au.

  • Superposition

If F causes a displacement u and G causes a displacement v, then F + G causes a displacement u + v.

Nonlinear problems have the exact opposite features and an additional one:

  • History Dependent

In a nonlinear problem, the “unique” solution u at time t is determined by the entire load history of P(t).

Numerical Techniques for Solving Nonlinear Problems

Numerical methods offer efficient and reliable approaches to obtaining accurate solutions for complex systems and scenarios. These techniques provide approximate numerical solutions to nonlinear problems, where analytical solutions may not be readily available. Two of the most common techniques discussed in this chapter:

  • Newton-Raphson method

The Newton-Raphson method is a popular iterative technique for finding the roots of a nonlinear equation. The method is based on the idea of approximating the function with a linear function at each iteration and then using the linear approximation to find a better estimate of the root. The process continues until the desired level of accuracy is achieved. Newton’s method is particularly useful for solving nonlinear equations with a single variable, and it converges rapidly when the initial guess is close to the actual root. (Abaqus convergence tutorial)

  • Quasi-Newton method

Quasi-Newton methods are a class of optimization algorithms that approximate the Hessian matrix of the function using only first-order information. The method involves iteratively updating the Hessian approximation and using it to find a better estimate of the minimum. Quasi-Newton methods are particularly useful for solving large-scale optimization problems, as they can handle non-differentiable functions and do not require the computation of second-order derivatives.

Implementing these methods in Abaqus simulations (Abaqus convergence tutorial) is covered in this chapter and the workshops of this package.

  • What do we learn from this package?
  • Teaching plan and Prerequisites and Next steps
  • Package specification
  • An overview of Finite Element Method
  • What are the FEA advantages?
  • What is Convergence in FEA?
  • What is a Nonlinear problem?
  • Properties of Linear and Nonlinear Problems
  • Numerical Techniques for Solving Nonlinear Problems
  • Problem Description
  • Simulating nonlinear spring in Abaqus/CAE
  • Checking solution convergence and the effect of time increment
  • Problem Description
  • Investigating the effect of tangent matrix on convergence
  • Implementing different numerical techniques and checking their convergence behavior

Workshop 1: Nonlinear Behavior | Nonlinear spring modeling

In this workshop, first, you will learn how to simulate a nonlinear spring in Abaqus/CAE. A nonlinear spring is the one whose force-displacement diagram is not linear and its stiffness changes during loading; it can have either a hardening behavior or softening. Because the model is nonlinear, convergence is an issue. So, the solution convergence is also checked in the simulation. The effect of time increment is also considered both on the convergence and the behavior of the model. (Abaqus convergence tutorial)

Workshop 2: Numerical Techniques Convergence

In this workshop, a plate under uniaxial tension is modeled. The load in this model is applied via two different methods: load control and displacement control. The main goal of this workshop is to investigate the effect of numerical techniques used to solve the problem on solution convergence. Different numerical techniques including Newton-Raphson and Quasi-Newton are compared and the effect of the tangent matrix on convergence is discussed. The tangent matrix effect on convergence is studied by changing this matrix once by using the Quasi-Newton method and once by using a user material subroutine (UMAT).

This workshop will provide you with great information about different numerical techniques and their convergence rate.

If you want to know about convergence issues and how to solve them, this article could be a great start (Abaqus convergence tutorial): Abaqus convergence issues in simple terms | FEA convergence problem.

It would be helpful to see Abaqus Documentation to understand how it would be hard to start an Abaqus simulation without any Abaqus tutorial. Moreover, if you need to get some info about the FEM, visit this article: “Introduction to Finite Element Method | Finite Element Analysis”.

One note, when you are simulating in Abaqus, be careful with the units of values you insert in Abaqus. Yes! Abaqus don’t have units but the values you enter must have consistent units. You can learn more about the system of units in Abaqus.

Also, learn about: Automatic Stabilization Abaqus of Unstable Problems 

Read More: What is Abaqus Small Sliding? | Finite Sliding VS Small Sliding

Read More: What is Abaqus Contact Damping and how to apply it in Abaqus?

Shipping and Delivery

All the package includes Quality assurance of training packages. According to this guarantee, you will be given another package if you are not satisfied with the training, or your money is returned. Get more information in terms and conditions of the CAE Assistant.
All packages include lifelong support, 24/7 support, and updates will always be sent to you when the package is updated with a one-time purchase. Get more information in terms and conditions of the CAE Assistant.

Notice: If you have any question or problem you can contact us.
Ways to contact us: WhatsApp/Online Support/Support@CAEassistant.com/ contact form.
Projects: Need help with your project? You can get free consultation from us here.

  • Online payment: with MasterCard, VisaCard and etc.
  • Offline payment: In this payment method, you should pay via PayPal and send your payment receipt as an attached file in the offline payment form.
  • via download link After purchase, a download link will be sent to you a zip file included training videos, documents and software files.
  • Send us your machine ID

To access tutorial video run the .exe file on your personal pc and send the generated code to shop@caeassistat.com and wait for your personal code, which is usable only for that pc, up to 24 hours from CAE Assistant support.

Here you can see the purchase process of packages: Track Order

Features

Abaqus tutorial video
Lecture notes
Abaqus workshop files
Contains all required files
Certification
Works for all Abaqus versions
Safe payment
money-back guarantee
Free 24/7 online mentoring
Access for life
updated content
Time-Saving Short But Full
Premium Corporate and Academic Clients
Prepared by High-Level Researchers
Fortran Abaqus subroutines
All payment method

Reviews

There are no reviews yet

Be the first to review “Abaqus convergence tutorial | Introduction to Nonlinearity and Convergence in ABAQUS”
SKU: caea-52024-1 Category: Tag: