Steel Bundle

 0.0 960.2
Conquer Advanced Steel Behavior: The Advanced Steel Bundle The Advanced Steel Bundle equips you with the knowledge and tools to

Cohesive Bundle

 312.0
Master Cohesive Zone Modeling: The Cohesive Bundle The Cohesive Bundle equips you with the knowledge and tools to effectively model

Fatigue Bundle

 0.0 600.2
Master Fatigue Analysis: The Fatigue Bundle The Fatigue Bundle equips you with the knowledge and tools to tackle fatigue analysis

UVARM subroutine in ABAQUS

 75.0
(9)
"UVARM subroutine  in ABAQUS" package teaches how to specify user-defined output variables at all material calculation points of elements for academic and industrial projects.

UEXPAN and VUEXPAN Subroutine

 120.0

In this tutorial, how to define increments of thermal strains, in order to model thermal expansion, is taught. The implementation of thermal expansion in model is done with UEXPAN and VUEXPAN subroutines for Abaqus/Standard solver (implicit method). In user subroutines UEXPAN or VUEXPAN, the increments of thermal strains can be defined as functions of predefined field variables, temperature, and state variables.

UEXPAN and VUEXPAN are called for all integration points of part elements where the definition of material or gasket behavior includes user-subroutine-defined thermal expansion.

The subroutines are used when the material’s thermal expansion behavior is too complex to model with the "EXPANSION" option in the Abaqus software environment. For example, the subroutines are used in problems where the thermal strains are complexly dependent on temperature, predefined field variables, and state variables, and there is a need to update these variables.

The user subroutine UEXPAN is called twice per element point in each iteration during coupled thermal-electrical-structural or coupled temperature-displacement analyses.

UGEN Subroutine in ABAQUS

 100.0

This tutorial is given the shear and bending forces as the output of the subroutine where the shell mechanical behavior is nonlinear and can only be presented on the basis of general terms of the shell matrix and such behavior is not present in the ABAQUS graphical environment.

UMAT Subroutine (VUMAT Subroutine) introduction

 220.0
(12)

This package is usable when the material model is not available in ABAQUS software. If you follow this tutorial package, including standard and explicit solver, you will have the ability to write, debug and verify your subroutine based on customized material to use this in complex structures. These lectures are an introduction to write advanced UMAT and VUMAT subroutines in hyperelastic Martials, Composites and Metal and so on.

Watch Demo

UMATHT Subroutine in ABAQUS

 180.0
UMATHT stands for User Material Heat Transfer. This subroutine is used to define a material's thermal behavior. When you have a thermal analysis and want to define the material's behavior and properties, which the Abaqus CAE cannot support, you need to use the UMATHT subroutine. This subroutine needs to define different variables, including the internal thermal energy per unit mass, the variation of internal thermal energy per unit mass with respect to temperature, etc. In this package, you will learn what the UMATHT subroutine is? When do we need to use it? And how it works, with some examples.