Abaqus Concrete Structure Modeling | Practical Examples (Part 4)

Original price was: € 299.0.Current price is: € 250.0.
The package includes 5 workshops on topics such as concrete, beam-column structures, composites, steel rebars, Ultra-High-Performance-Fiber-Reinforcement Concrete columns, CFRP bars, hollow-core square reinforced concrete columns wrapped, damaged concrete beams, High Strength Concrete(HSC),ECC/Concrete Composite Beam-Column Joints, circular concrete-encased concrete-filled steel tube (CFST) stub columns, and etc. Every tutorial includes all needed files and step-by-step English videos and is explained from A to Z. For a more comprehensive lesson and theoretical presentation on the behavior and simulation of concrete structures, check out our full package on concrete structures, which includes detailed learning lessons. However, we have gathered all 20 workshops, along with several additional lessons in video format to help you gain more expertise on the topic, in the introduced package, which you can acquire for just 600 euros.

Abaqus Concrete Structure Modeling | Practical Examples (Part 3)

Original price was: € 299.0.Current price is: € 250.0.
The package includes 5 workshops on topics such as concrete, beam-column structures, composites, steel rebars, Ultra-High-Performance-Fiber-Reinforcement Concrete columns, CFRP bars, hollow-core square reinforced concrete columns wrapped, damaged concrete beams, High Strength Concrete(HSC),ECC/Concrete Composite Beam-Column Joints, circular concrete-encased concrete-filled steel tube (CFST) stub columns, and etc. Every tutorial includes all needed files and step-by-step English videos and is explained from A to Z. For a more comprehensive lesson and theoretical presentation on the behavior and simulation of concrete structures, check out our full package on concrete structures, which includes detailed learning lessons. However, we have gathered all 20 workshops, along with several additional lessons in video format to help you gain more expertise on the topic, in the introduced package, which you can acquire for just 600 euros.    

Abaqus Concrete Structure Modeling | Practical Examples (Part 2)

Original price was: € 299.0.Current price is: € 250.0.
The package includes 5 workshops on topics such as concrete, beam-column structures, steel rebars, Ultra-High-Performance-Fiber-Reinforcement Concrete columns, CFRP bars, hollow-core square reinforced concrete columns wrapped, damaged concrete beams, and etc. Every workshop includes all needed files and step-by-step English videos and is explained from A to Z. For a more comprehensive lesson and theoretical presentation on the behavior and simulation of concrete structures, check out our full package on concrete structures, which includes detailed learning lessons. However, we have gathered all 20 workshops, along with several additional lessons in video format to help you gain more expertise on the topic, in the introduced package, which you can acquire for just 600 euros.

Abaqus Concrete Structure Modeling | Practical Examples (Part 1)

Original price was: € 299.0.Current price is: € 230.0.
The package includes 5 workshops on topics such as concrete, beam-column structures, steel rebars, Ultra-High-Performance-Fiber-Reinforcement Concrete columns, CFRP bars, hollow-core square reinforced concrete columns wrapped, damaged concrete beams, and etc. Every workshop includes all needed files and step-by-step English videos and is explained from A to Z. For a more comprehensive lesson and theoretical presentation on the behavior and simulation of concrete structures, check out our full package on concrete structures, which includes detailed learning lessons.    

Abaqus steel material and structures | Practical examples

Original price was: € 299.0.Current price is: € 270.0.
Here in this package, numerous models of crack steel material structures modeling, such as the shear failure, FLD criterion and different metal damage theories in concrete, steel, dams, and bones are examined through workshops. Every tutorial includes all needed files and step-by-step English videos. For a more comprehensive lesson and theoretical presentation on the behavior and simulation of steel materials and structures, check out our full package on steel structures, which includes detailed learning lessons. The introduced package includes all the workshops within this package, along with several lessons in video format, to help you master the theory of steel structure simulation in Abaqus.

 

Composite Fatigue Simulation with Subroutine in ABAQUS (unidirectional) for 3D Element

 470.0

Fatigue in composites refers to the weakening of a material caused by repeatedly applied loads or stress cycles over time. When a composite material is subjected to cyclic loading, small cracks or microdamage can form within the material, which may grow and lead to failure after a certain number of loading cycles. This is a significant consideration in the design and analysis of composite structures, especially in applications subjected to repeated stress, such as in aerospace, automotive, or civil engineering.

In one of our other packages, we have used the UMAT subroutine in Abaqus to simulate fatigue in composites in two-dimensional space. The current project is more comprehensive, as it addresses composite fatigue in both 2D and 3D spaces. So you can use it for the simulation of both shells and solids. In this project, you will first become familiar with simulating composite fatigue in 3D space using the Abaqus UMAT subroutine. Then, we will provide a complete UMAT code along with Abaqus files for extending the simulation to 3D space, enabling the 3D simulation of composite fatigue in Abaqus.

Simulation of the Generalized Maxwell Viscoelastic Model using UMAT Subroutine

 310.0

This research presents a precise three-dimensional mechanical response of viscoelastic materials, such as polymers and elastomers, using the generalized rheological Maxwell viscoelastic model (considering the five Maxwell elements). That is to say, we implement the Maxwell model of viscoelasticity using the UMAT subroutine for the Abaqus standard solver. To clarify, using the concepts in this tutorial, you can implement the model for any N-Maxwell elements, using the viscoelastic Maxwell model.

The Maxwell viscoelastic model is appropriate for qualitative and conceptual analysis, but the single Maxwell element is not sufficient to describe the behavior of elastomers and polymers. For a more precise definition of these materials, the generalized Maxwell viscoelastic model is used. In the generalized Maxwell viscoelastic model, N piece of Maxwell elements and a single spring (the Hooke-element) are assembled in parallel. This tutorial, by customizing the UMAT subroutine to simulate flexible samples behavior, contributes to the advancement of viscoelastic materials design and analysis.

Using Viscoelastic and Path-Dependent Models for Analyzing the Curing Process in Fiber-Reinforced Composites With Abaqus subroutines

 290.0
(2)
Fiber-reinforced composites, widely used across various industries, consist of reinforcing fibers embedded in a matrix. During the curing process, this mixture transforms into a stable material. Curing is a critical step to ensure the durability and strength of the final product. In one of our intermediate packages, we used Abaqus to analyze the curing process in composites with linear elastic models. While these models are straightforward and user-friendly, their accuracy is limited because composites exhibit viscoelastic behavior during curing, rather than elastic behavior. To address this limitation, the current package introduces two more advanced and accurate models for analyzing residual stresses in composites: the viscoelastic model and the path-dependent model. These models offer significantly greater accuracy compared to linear elastic ones but involve added complexity. To simplify this complexity for users, the package begins with a comprehensive overview of the underlying theories and formulations for the viscoelastic and path-dependent models. It then provides detailed guidance on implementing these models using Abaqus subroutines. Finally, workshops are included to demonstrate how the viscoelastic model significantly improves the prediction of residual stresses in composites compared to the elastic models featured in our intermediate package.

Abaqus Kelvin Voigt Model (Viscoelastic) Simulation Using UMAT and VUMAT Subroutines

 270.0
(4)

This research presents a precise three-dimensional mechanical response of viscoelastic materials using Abaqus kelvin voigt viscoelastic model. We performed this kelvin voigt model Abaqus simulation using both UMAT and VUMAT subroutines for standard and explicit solvers.

The behavior of viscoelastic materials is a state between the behavior of a liquid and a solid. In other words, they behave both like liquids and solids. That is to say, there are many natural and synthetic materials that are classified as viscoelastic materials; From the biological structures of the body such as skin, cartilage and tissue to concrete, foams, rubbers, and synthetic polymers. Due to these unique properties, viscoelastic materials have many applications.

In this regard, the primary goals of this study include the development and implementation of an accurate three-dimensional Abaqus kelvin voigt viscoelastic model, and the integration of viscoelastic properties into the analysis, which can improve the prediction of viscoelastic materials response under different boundary and loading conditions.

This tutorial, by customizing the UMAT and VUMAT subroutines to simulate flexible samples behavior, contributes to the advancement of viscoelastic materials design and analysis.

Implementation of Soil Constitutive Models in Abaqus | With a Special Focus on CSJ Models

 270.0

Constitutive model implemented in calculation code, play an important role in the material behaviors prediction. In the field of geotechnical engineering there are numerous soil constitutive models. By installing these models in a finite element code such as Abaqus, their development, efficiency and advancement can be increased. Also, more and more complex engineering problems can be solved by this method. But to do this, you need a proper understanding of the mathematical and programming basics of these models. This tutorial focuses on implementing advanced constitutive models in Abaqus, particularly for simulating soil behavior. Focusing on the CJS model, this tutorial tries to teach how to work and how to program these models in Abaqus code. It includes detailed explanations of VUMAT and UMAT subroutines and practical examples of implementing the CJS model.

Note: In this project, we have discussed the UMAT and VUMAT subroutines, their specifications, and features. You will become familiar with the implementation of both UMAT and VUMAT subroutines. However, the specific focus of this project, for which we have provided the necessary files and run the analysis, is on using the VUMAT model. If you need to use Abaqus for this project with the standard solver, you will need to write the UMAT subroutine yourself.

Concrete Damage Plasticity Simulation of FRP-Confined Concrete Columns in Abaqus

 280.0

This tutorial package provides a comprehensive guide to implementing USDFLD subroutine in the context of Concrete Damage Plasticity Material Model.  The tutorial focuses on key modeling aspects such as definition of concrete material properties using Concrete Damage Plasticity (CDP) Model.  A theoretical background of the model will be presented and detailed explanation of the definition of all material properties will be given.  The package will also explain the usage of the USDFLD subroutine to modify concrete material properties dynamically during simulation. Examples of implementing USDFLD in the context of CDP will be presented with focus on material properties that vary in function of pressure and axial strain defined as field variables.

All other modeling details will also be explained including boundary conditions, meshing, loading, and interactions.

By following the detailed steps in this tutorial, you will be able to create and analyze advanced FEM simulations in Abaqus with a focus on concrete having properties that vary during simulation.

Abaqus advanced tutorials on concrete members

 250.0

Welcome to the "Abaqus Advanced Tutorials on Concrete Members" course, designed to provide civil and structural engineers with cutting-edge expertise in finite element modeling (FEM) and simulation using Abaqus. This advanced-level course focuses on the detailed modeling of complex concrete and composite columns under various loading conditions. Topics include the simulation of tubed reinforced concrete columns, concrete-filled double skin steel columns, and fiber-reinforced polymer (FRP) composite columns. Participants will delve into axial and eccentric compression loading scenarios, with a special focus on hollow and tapered cross-sections. The course also emphasizes comparing simulation results with experimental data from published research, ensuring practical relevance and accuracy. By the end of the course, learners will be equipped with the necessary skills to tackle advanced structural analysis challenges using Abaqus, reinforcing their understanding of concrete member behavior in real-world applications.

Hygrothermal effects on composite materials | Degradation in Fiber Reinforced Composites Abaqus Simulation: Python & Subroutines

 280.0

In this tutorial, we explore the hygrothermal degradation composites using ABAQUS, a powerful tool for parallel finite element analysis. Industries like aerospace, marine, and automotive heavily rely on these composites due to their high strength-to-weight ratio and versatility. However, long-term exposure to moisture and temperature can degrade their mechanical properties, making an analysis of hygrothermal effects on composite materials essential for ensuring durability.

ABAQUS allows precise modeling of these environmental conditions through Python scripts and Fortran subroutines. This combination enables efficient simulations across multiple processors, offering insights into key elastic properties, such as Young’s modulus and shear modulus, under varying conditions. By leveraging the ABAQUS Python Scripting Micro Modeling (APSMM) algorithm and custom subroutines, engineers can predict the long-term performance of fiber-reinforced composites, optimizing design and enhancing material performance in critical sectors like aerospace and marine.

In the present Abaqus tutorial for parallel finite element analysis, we have presented the software skills that a person needs when he wants to perform a parallel finite element analysis such as a micro-macro scale analysis. The Abaqus tutorial for parallel finite element analysis covers all you need to write a python scripting code for noGUI environment and also Fortran code for the subroutine environment of Abaqus to execute a parallel finite element analysis via Abaqus software. You can download the syllabus of this package here.

Modified Johnson Cook viscoplastic model with the Hershey yield surface | VUMAT Subroutine for 3D continuum elements

 240.0

This project offers a set of Abaqus models for 3D continuum elements, integrating a VUMAT subroutine that implements the Modified Johnson Cook (MJC) viscoplastic model and the Hershey yield surface. The MJC model simulates material behavior under varying strain rates and temperatures, while the Hershey yield surface predicts complex yielding behavior. Together, they provide highly accurate simulations of materials under extreme conditions such as impacts and high temperatures. Ideal for industries like automotive, aerospace, and defense, this package supports critical applications like crash testing, metal forming, and ballistic analysis. The model has been implemented for 3D continuum elements.

Note: The inp and Fortran files are only applicable in Linux.

Analysis of Plain and Reinforced Concrete Structures with ABAQUS | Validation with Experiments

 120.0
(3)

This comprehensive package offers four different workshops focused on the analysis of plain and fiber-reinforced concrete structures using ABAQUS. Designed for professionals, researchers, and students, it provides hands-on learning in modeling, simulating, and validating concrete structures under various conditions. Each workshop dives into specific aspects of concrete behavior, from flexural to compressive strength, incorporating the latest sustainable practices through the use of recycled materials. The package ensures mastery of ABAQUS, offering practical insights and a cost-effective path to advanced concrete analysis and safer, more durable infrastructure design.

Note: Only the first workshop has video.

Stress-strain characteristic of SFRC using recycled fibres | An Abaqus Simulation

 40.0

This training utilizes Abaqus software to simulate and analyze the stress-strain characteristics of Steel Fiber Reinforced Concrete (SFRC) using recycled fibers. The importance of this work lies in its contribution to sustainable construction practices by validating the effectiveness of recycled steel fibers in enhancing concrete's mechanical properties. Through advanced finite element analysis (FEA), the project addresses challenges in accurately modeling SFRC's post-cracking behavior, ensuring that the simulations are aligned with experimental data for reliable results. Abaqus' capabilities in nonlinear material modeling, stress-strain simulation, and principal stress analysis significantly improve the accuracy and reliability of the research, making it a valuable tool for both academia and industry.

Nonlinear Analysis of RC Columns Using ABAQUS | Validation with Experimental Data

 40.0

Reinforced Concrete (RC) columns are critical components in civil engineering, essential for the stability of buildings, bridges, and infrastructure during seismic events. This study leverages ABAQUS, a powerful finite element analysis (FEA) software, to simulate the seismic performance of RC columns. By modeling columns in 3D and using ABAQUS's advanced tools, we replicate experimental conditions to analyze their behavior under seismic loads. Numerical simulations offer the advantage of exploring various scenarios quickly and cost-effectively, while also allowing for extensive parametric studies. The study details how ABAQUS models both concrete and steel reinforcement, accounts for interaction effects, and applies appropriate loading and boundary conditions. The simulations provide valuable insights into failure modes, load-displacement responses, and crack patterns, offering a comprehensive understanding of RC column performance in seismic scenarios.

Analysis of Steel-Fiber Reinforced Concrete (SFRC) Beams with Abaqus

 40.0
Steel-Fiber Reinforced Concrete (SFRC) is an innovative composite material that enhances the structural integrity of traditional concrete by incorporating steel fibers, which improve toughness and ductility. This makes SFRC concrete particularly valuable in earthquake-prone regions, where its ability to resist cracking and absorb energy is critical. The analysis of SFRC concrete beams, through both experimental and numerical methods like finite element analysis (FEA) in Abaqus, provides insights into their behavior under seismic loads, highlighting benefits like enhanced energy dissipation and ductility. Such analysis is essential for designing resilient structures, offering significant advantages to engineers, construction companies, researchers, and policymakers.

Fiber Reinforced Concrete Beams | An Abaqus Simulation

 30.0
Fiber Reinforced Concrete (FRC) incorporates fibers into the concrete matrix to enhance its mechanical properties. For example, we can refer to tensile strength, toughness, and impact resistance. This innovation reduces concrete’s inherent brittleness, making it more ductile and capable of withstanding higher stresses without failure. FRC’s ability to bridge cracks and improve durability makes it ideal for demanding structural applications, including industrial floors, pavements, bridge decks, and airport runways. Accurate analysis of FRC beams, particularly their flexural behavior, is crucial for predicting performance under real-world conditions. We use Abaqus, a powerful finite element analysis software, to simulate and analyze these beams. It provides insights into how fiber content, concrete strength, and reinforcement ratios affect structural performance. These simulations provide valuable data for engineers, researchers, and students, aiding in the design and optimization of FRC structures.  

Abaqus basic tutorials on concrete beams and columns

 150.0

Welcome to the “Abaqus Basic Tutorials on Concrete Members,” a comprehensive course tailored for civil and structural engineers seeking to master finite element modeling (FEM) of concrete structures. This tutorial covers key concepts such as plain concrete beam and column modeling, reinforced concrete members, and fiber-reinforced polymer (FRP) composites. The course guides learners through the application of boundary conditions, material properties, and various loading conditions in Abaqus. Key topics include plain concrete beam and column modeling, reinforcement modeling with steel bars and stirrups, and fiber-reinforced polymer (FRP) reinforcement techniques. Participants will also explore comparing simulation results with experimental data, as well as interpreting critical outcomes such as stress distribution and failure modes. Through hands-on workshops, learners will simulate structural behaviors under axial, lateral, and compression loads, ensuring a practical understanding of FEM for concrete members. By the end of this course, participants will be proficient in using Abaqus to model and analyze concrete structures, reinforced elements, and advanced composites, providing them with a strong foundation for structural analysis and design.

MASTER COMPOSITE SIMULATION IN ABAQUS

 5300.0
In this comprehensive online course, you'll explore composite material modeling using Abaqus software. We’ll guide you through the process of creating precise finite element models for various composites, including unidirectional, woven, and chopped fiber configurations. You'll also learn to model different types of damage within these composites, including wood composites like balsa wood. But the course goes further, equipping you to develop custom material models and damage functionalities using subroutines that build on Abaqus' built-in capabilities, such as 3D continuum, Hashin, and Puck models. Additionally, you'll delve into simulating curing and fatigue behavior in composites, applying these advanced techniques for more accurate analysis.

Seismic Analysis in Post-Tensioned Concrete Gravity Dam Design Using Abaqus Subroutines

 190.0
This project investigates the seismic analysis of post-tensioned concrete gravity dams. To achieve this, we utilized ABAQUS CAE with the UEL (User Element) subroutine. The project enhances the simulation of complex structural interactions, including inclined anchors and weak joints, which are crucial elements in concrete gravity dam design. Specifically, it provides a detailed comparison between transient and pseudo-static analysis results. This comparison is essential for understanding how the dynamic responses and structural behavior of these dams under seismic conditions can be effectively modeled and validated within the broader scope of concrete gravity dam design. Moreover, the project offers insights into potential debonding issues and their impact on post-tensioning forces, which are critical considerations in concrete gravity dam design. This research benefits civil engineers and academics by advancing the methodologies used for designing and analyzing the resilience of gravity dams, particularly in earthquake-prone regions.

Viscoplasticity Abaqus Simulation Using UMAT Subroutine | Perzyna Viscoplastic Model

 270.0
Viscoplasticity is a continuum mechanics theory that describes the behavior of time-dependent, inelastic strains solids, especially metals, polymers, and elastomers. That is to say, the viscoplasticity theory provides the most precise material model for estimating the mechanical behavior of polymers. This tutorial presents the accurate 2-3D mechanical responses of viscoplastic materials using the Perzyna viscoplastic model. To clarify, we implement the Perzyna model of viscoplasticity using the UMAT Abaqus subroutine. In addition, using the concepts in this tutorial, you can implement the other viscoplastic rheological models. In this regard, the primary goals of this study include the development and implementation of the precise 2-3D models of viscoplastic materials, which can improve the prediction of viscoplasticity response. By customizing the UMAT subroutine to simulate sample behavior, the tutorial contributes to the advancement of viscoplasticity design and analysis. In other words, it helps you with viscoplasticity simulations in Abaqus, with a specific focus on the development of the Abaqus Perzyna UMAT model.

Abaqus Simulation of the Curing Process in Composites: A Specific Focus on the Pultrusion Method

 250.0

Pultrusion is a crucial task for producing constant-profile composites by pulling fibers through a resin bath and heated die. Simulations play a vital role in optimizing parameters like pulling speed and die temperature to enhance product quality and efficiency. They predict material property changes and aid in process control, reducing reliance on extensive experimental trials. However, simulations face challenges such as accurately modeling complex material behaviors and requiring significant computational resources. These challenges underscore the need for precise simulation methods to improve Pultrusion processes. This study employs ABAQUS with user subroutines for detailed mechanical behavior simulations, including curing kinetics and resin properties. Key findings include insights into material property changes, and optimization strategies for enhancing manufacturing efficiency and product quality. This research provides practical knowledge for implementing findings in real-world applications, advancing composite material production.

Notice that, pultrusion is a composite curing method, which may share some overlapping features with our Intermediate and Advanced curing packages. However, what sets pultrusion apart is that the composite passes over a heated die during the process. In this project, the die has also been modeled, with environmental heat applied to it using convection and a film subroutine. The heat is subsequently transferred to the sample through contact with the die. Afterward the die is removed. All these procedure is modeled in this project, with Abaqus CAE step-by-step. In contrast, in our Intermediate and Advanced packages for the oven curing of prepregs, no die has been modeled. The heat is applied without convection and, for simplicity, the heat is treated as a first-type boundary condition, which introduces some errors.

Note: The files and video which explains how to use the code are available. The PDF file will be available two weeks after purchase.