Showing 25–48 of 62 results

Abaqus basic tutorials on concrete beams and columns

Original price was: € 150.0.Current price is: € 127.0.

Welcome to the “Abaqus Basic Tutorials on Concrete Members,” a comprehensive course tailored for civil and structural engineers seeking to master finite element modeling (FEM) of concrete structures. This tutorial covers key concepts such as plain concrete beam and column modeling, reinforced concrete members, and fiber-reinforced polymer (FRP) composites. The course guides learners through the application of boundary conditions, material properties, and various loading conditions in Abaqus. Key topics include plain concrete beam and column modeling, reinforcement modeling with steel bars and stirrups, and fiber-reinforced polymer (FRP) reinforcement techniques. Participants will also explore comparing simulation results with experimental data, as well as interpreting critical outcomes such as stress distribution and failure modes. Through hands-on workshops, learners will simulate structural behaviors under axial, lateral, and compression loads, ensuring a practical understanding of FEM for concrete members. By the end of this course, participants will be proficient in using Abaqus to model and analyze concrete structures, reinforced elements, and advanced composites, providing them with a strong foundation for structural analysis and design.

0 days 00 hr 00 min 00 sc

An Efficient Stiffness Degradation Composites Model with Arbitrary Cracks | An Abaqus Simulation

 0.0
(3)
Composite materials are critical in high-performance applications due to their exceptional strength-to-weight ratios and customizable properties. They are widely used in aerospace, automotive, and civil engineering. However, their complex structure makes them susceptible to various damage mechanisms, such as tunnel cracking and delamination, which can significantly affect their structural integrity. Accurate damage prediction is essential for effective use and maintenance. Traditional methods often rely on extensive experimental testing, but finite element analysis (FEA) has become a valuable alternative. Abaqus is particularly effective for modeling composite damage due to its comprehensive material modeling and customizable subroutines. The research presented utilizes Abaqus to develop a model for predicting Stiffness Degradation Composites laminates with arbitrarily oriented cracks, offering valuable insights into damage progression and stiffness loss under various loading conditions. To achieve this, UEL, UMAT, and DISP subroutines are used. Additionally, a Python script is provided to import the model into Abaqus.  

Analysis of Cold Rolled Aluminium Alloy Channel Columns With Abaqus CAE

Original price was: € 110.0.Current price is: € 93.0.
Cold rolled aluminium alloy channel sections are manufactured using a cold-rolling method that is faster and less energy-intensive than traditional methods. It reduces labor, material costs, and construction time. These sections are ideal for green and sustainable buildings due to their recyclability, lightweight nature, and corrosion resistance, making them suitable for various structural applications. This project guides you in using Abaqus for numerical analysis of cold rolled aluminium alloy channel columns to ensure their safety and performance under various loads. This enables you to achieve accurate designs for these members, preventing structural failures, inefficiencies, and increased costs.
0 days 00 hr 00 min 00 sc

Seismic Analysis in Post-Tensioned Concrete Gravity Dam Design Using Abaqus Subroutines

Original price was: € 190.0.Current price is: € 161.0.
This project investigates the seismic analysis of post-tensioned concrete gravity dams. To achieve this, we utilized ABAQUS CAE with the UEL (User Element) subroutine. The project enhances the simulation of complex structural interactions, including inclined anchors and weak joints, which are crucial elements in concrete gravity dam design. Specifically, it provides a detailed comparison between transient and pseudo-static analysis results. This comparison is essential for understanding how the dynamic responses and structural behavior of these dams under seismic conditions can be effectively modeled and validated within the broader scope of concrete gravity dam design. Moreover, the project offers insights into potential debonding issues and their impact on post-tensioning forces, which are critical considerations in concrete gravity dam design. This research benefits civil engineers and academics by advancing the methodologies used for designing and analyzing the resilience of gravity dams, particularly in earthquake-prone regions.
0 days 00 hr 00 min 00 sc

Fiber-based Model for High-Strength Steel Beam Analysis with Abaqus

Original price was: € 190.0.Current price is: € 161.0.
Designers create high-strength steel beams to enhance load-bearing capacity and reduce weight, which is crucial for seismic-resistant structures. Accurate design and High-Strength Steel Beam Analysis are essential to address local buckling and low-cycle fatigue. While experimental methods are costly, numerical simulations using tools like ABAQUS offer precise analysis and modeling capabilities. These include, for example, the stress-strain curve generation and cyclic loading protocols. This project mainly provides a tutorial on ABAQUS modeling, aimed at improving the design and analysis of high-strength steel sections. To do so, it discusses the material property definitions, plasticity models, and mesh details.
0 days 00 hr 00 min 00 sc

Advanced Finite Element Analysis of Off-Axis Tunnel Cracking Laminates

 0.0
(5)
The project investigates off-axis oriented tunnel cracking laminates. It focuses on cracks growing at an angle to the primary fiber direction in layered laminates. By examining factors such as ply thickness, crack spacing, and material properties, the study analyzes how these elements influence the energy release rate and mode mix during crack propagation. The project employs Abaqus CAE, along with UEL and UMAT subroutines, to model and analyze these cracks. It offers comprehensive insights into crack growth mechanics under various loading conditions. Moreover, a Python script is used to automate the entire simulation process. It handles tasks such as geometry creation, defining model properties, setting boundary conditions, generating and modifying input files, and post-processing. So, it enables us to calculate crack profiles and energy release rates. The project benefits researchers, engineers, academics, and industry practitioners by providing valuable methodologies and insights into the behavior of composite materials.

Bolting Steel to Concrete in Composite Beams: ABAQUS Simulation Validated Against Experiments

Original price was: € 140.0.Current price is: € 119.0.
Composite beams with welded stud shear connectors pose challenges in terms of disassembly and reuse, which impacts their sustainability. By bolting steel to concrete, we can aquire a more sustainable alternative, facilitating easier disassembly and reuse. Engineers value concrete-steel bolted shear connections for their fatigue resistance, secure connections, and ease of disassembly. These factors make them suitable for various applications. Proper design is crucial for these connections to ensure effective shear force transfer and durability. This project provides valuable insights into analyzing bolted concrete-steel connections. It helps utilizing advanced modeling techniques in ABAQUS to simulate their behavior under different loading conditions. By addressing the benefits and challenges of experimental and numerical methods, this project enhances our understanding of composite connections. It enables improved construction practices. To ensure model’s accuracy, we compared the results with the experimental data, for steel concrete bolts. The project specifically helps you to simulate the bahavior of steel concrete composite beams in the following paper. “A study on structural performance of deconstructable bolted shear connectors in composite beams”  
0 days 00 hr 00 min 00 sc

Inherent strain method in Metal Additive Manufacturing simulation (using subroutines and Python scripting in Abaqus)

Original price was: € 250.0.Current price is: € 212.0.

Additive Manufacturing (AM), a revolutionary layer-by-layer fabrication technology, is transforming how products are designed and manufactured. This comprehensive tutorial package focuses on the Inherent Strain (IS) method, a highly efficient numerical approach for simulating the Laser Powder Bed Fusion (LPBF) process in metal additive manufacturing. The detailed thermo-mechanical simulation of the Laser Powder Bed Fusion (LPBF) for complex geometric parts requires a large number of time steps to estimate residual stress and distortion, which is not computationally cost-effective. Furthermore, based on the large thermal gradient near the heat source, the mesh size must be sufficiently small to accurately predict the induced residual stress and distortion of the deposited layers in the heat-affected zone. Therefore, applying a coupled thermo-mechanical analysis for multiple laser scans with a fine mesh model to macro-scale simulation would incur excessively large computational costs.

Additionally, the large number of degrees of freedom for each element in the mechanical analysis leads to higher complexity as well as a longer amount of processing time. Detailed thermo-mechanical analysis for an industrial component is almost impractical since it would demand hundreds of terabytes of memory and years to calculate. Therefore, to overcome the huge computational burden associated with the numerical simulation of the LPBF caused by the infinitesimal laser spot size and thousands of thin layers with a thickness at the micron level, the Inherent Strain Method in additive manufacturing has been widely used in research and commercial software.

In this tutorial, the Inherent Strain Method additive manufacturing approach is presented both theoretically and practically in Abaqus. An agglomeration approach will be considered to transfer an equivalent inherent strain from both micro-scale and macro-scale modeling strategies. The implementation of this approach is explained step by step, accompanied by various workshops in micro-scale and macro-scale models for different geometries. This training package enables you to write your subroutine codes and Python scripting, as well as have more control over the LPBF process simulation.

0 days 00 hr 00 min 00 sc

Abaqus shaft slip ring simulation | Using Python scripts for parametric analysis

Original price was: € 270.0.Current price is: € 229.0.
The shaft slip ring is a crucial component enabling the transfer of power and signals in rotating systems. So, this tutorial delves into the intricate Abaqus shaft slip ring analysis. It focuses primarily on the mechanical aspects, offering insights into displacement, stress fields, and strains through the shaft analysis Abaqus model. The tutorial utilizes parametric modeling and Python scripting for the Abaqus shaft slip ring simulation. So, it enables you to optimize geometric parameters, material properties, and loading conditions, enhancing efficiency in modeling processes. It addresses complexities such as creep behavior and material interactions, providing a comprehensive approach tailored for realistic simulations. The tutorial meets various project requirements, supporting them with practical examples and adaptable simulation files.
0 days 00 hr 00 min 00 sc

3D Simulation of Gurson-Tvergaard-Needleman (GTN) Damage Model

Original price was: € 190.0.Current price is: € 161.0.
The GTN (Gurson-Tvergaard-Needleman) damage model is a robust continuum damage model used to simulate ductile fracture in materials. It accounts for porosity, a key damage parameter, to predict material behavior under various loading conditions. The model's benefits include comprehensive fracture analysis, accurate damage prediction, versatility, and enhanced simulation capabilities. Despite these advantages, implementing the GTN model in software like Abaqus (GTN model Abaqus) is challenging. It is due to the need for custom subroutines, such as VUMAT. However, writing the subroutine requires proficiency in Fortran programming and an understanding of finite element analysis. This project provides a detailed guide for using the VUMAT subroutine to define the GTN model in Abaqus. It addresses challenges like high computational costs and the need for extensive experimental data. The tutorial demonstrates the model's application in material design, failure analysis, structural integrity assessment, research and development, and manufacturing process simulation. By exploring stress distribution, nodal temperatures, and displacement fields, the project aims to enhance the understanding and predictive capabilities of the GTN damage model.
0 days 00 hr 00 min 00 sc

Viscoplasticity Abaqus Simulation Using UMAT Subroutine | Perzyna Viscoplastic Model

Original price was: € 270.0.Current price is: € 229.0.

Viscoplasticity describes the rate-dependent inelastic behavior of materials, where deformation depends on both stress magnitude and application speed. This concept is crucial in many engineering applications, such as designing structures under dynamic loads, modeling soil behavior during earthquakes, and developing materials with specific mechanical properties. Viscoplasticity Abaqus simulation, especially using Abaqus with UMAT subroutines, are vital for understanding, predicting, and optimizing the behavior of viscoplastic materials. This tutorial focuses on implementing the Perzyna viscoplasticity model in Abaqus. The Perzyna viscoplastic model, a strain rate-dependent viscoplasticity model, relates stress to strain through specific constitutive relations. This involves defining plastic strain rate based on stress state, internal variables, and relaxation time. The tutorial provides general UMAT codes for viscoplastic analysis, yielding results like stress fields essential for various engineering applications. These simulations help in predicting permanent deformations, assessing structural failure points, and analyzing stability under different loads, benefiting fields such as aerospace, automotive, civil engineering, and energy.

0 days 00 hr 00 min 00 sc

Abaqus User element tutorial | UEL advanced level

Original price was: € 270.0.Current price is: € 229.0.
(10)
User element (UEL) subroutine (user-defined element) is the highest level of a subroutine that Abaqus offers to its users. This subroutine allows the user to program the basic building block of a finite element simulation. This subroutine becomes very powerful when the user wants to implement a type of element that is not available in Abaqus. Using this subroutine, user can define different types of shape functions, introduce element technology that is not available in Abaqus, or simulate multiphysical behavior that is not possible otherwise. This Abaqus user element tutorial package will give a brief introduction to the user element subroutine followed by theory and algorithm to write subroutine small strain mechanical analysis. First, we will highlight the UEL element stiffness matrix and element residual vector which are to be programmed in the first example. We will also cover shape functions and numerical integration. Next, we’ll talk about UEL inputs and outputs. The first example contains the detailed development procedure of a general-purpose subroutine for 2D plane-strain and 3D simulations using triangular, quadrilateral, tetrahedral, and hexahedral type of elements with reduced and full integration scheme. The second example demonstrates the procedure to build UEL-compatible model in Abaqus/CAE. It also demonstrates how to apply complicated boundary conditions with UEL as well as perform Abaqus analysis on structures which has standard and user elements. As an outcome, user can write their own UEL subroutine afterwards using this program as template.
0 days 00 hr 00 min 00 sc

Pultrusion Crack Simulation in Large-Size Profiles | Pultrusion Abaqus

Original price was: € 250.0.Current price is: € 212.0.
(10)

Pultrusion is a crucial task for producing constant-profile composites by pulling fibers through a resin bath and heated die. Simulations play a vital role in optimizing parameters like pulling speed and die temperature to enhance product quality and efficiency. They predict material property changes and aid in process control, reducing reliance on extensive experimental trials. However, simulations face challenges such as accurately modeling complex material behaviors and requiring significant computational resources. These challenges underscore the need for precise simulation methods to improve Pultrusion processes. This study employs ABAQUS with user subroutines for detailed mechanical behavior simulations, including curing kinetics and resin properties. Key findings include insights into crack formation (pultrusion crack simulation), material property changes, and optimization strategies for enhancing manufacturing efficiency and product quality. This research (pultrusion Abaqus) provides practical knowledge for implementing findings in real-world applications, advancing composite material production.

0 days 00 hr 00 min 00 sc

Elastomeric Foam Simulation Using Abaqus Subroutines

Original price was: € 270.0.Current price is: € 229.0.
This study focuses on modeling the mechanical behavior of open-cell, isotropic elastomeric foams. It is essential for applications in materials science and engineering. The project offers insights into designing customized elastomeric foam materials tailored for impact protection in automotive, sports equipment, and aerospace industries. Numerical simulations, using software like Abaqus, enable the prediction of complex behaviors such as hyperelasticity and viscoelasticity under various loading conditions. This finite element analysis of elastomers includes theoretical formulations for hyperelastic constitutive models based on logarithmic strain invariants, crucial for accurately describing large deformations. Practical benefits include the implementation of user-material subroutines in Abaqus, facilitating future extensions to incorporate strain-rate sensitivity, and microstructural defects analysis. This comprehensive approach equips learners with theoretical knowledge and practical tools to advance elastomeric foam simulation. Moreover, it enhances their capability to innovate and optimize materials for diverse applications.
0 days 00 hr 00 min 00 sc

Theta Protection Creep Model | Turbine Blade Creep Life Accurate Prediction | Creep Failure in Turbine Blades

Original price was: € 250.0.Current price is: € 212.0.
(10)

Creep is one of the most significant failure modes in many components where the working temperature and stresses are high for a prolonged period of time. Existing creep models in commercial analysis software like Abaqus are not adequate to model all stages of creep namely – primary, secondary, and tertiary stages. Theta projection method is a convenient method proven to predict all stages of creep, especially the tertiary stage where strain rates are high leading to internal damage and fracture. The aim of the project is to develop a user subroutine for Abaqus to model creep in components using the Theta projection method. The constitutive model for the Theta projection method based on the accumulation of internal state variables such as hardening, recovery, and damage developed by (R.W.Evans, 1984) is adopted to compile a Fortran code for the user subroutine. The user subroutine is validated through test cases and comparing the results with experimental creep data. Creep analysis of a sample gas turbine blade (Turbine Blade Creep) is then performed in Abaqus through the user subroutine and the results are interpreted.

Results of test cases validate the accuracy of the Theta Projection Method in predicting all primary, secondary, and tertiary stages of creep than existing creep models in Abaqus (Creep Failure in Turbine Blades). Results at interpolated & extrapolated stress & temperature conditions with robust weighted least square regression material constants show the convenience in creep modeling with less input data than existing models. The results of creep analysis not only predicted the creep life but also indicated the internal damage accumulation. Thus, creep modeling of components through the user subroutine at different load conditions could lead us to more reliable creep life predictions and also indicate the regions of high creep strain for improvements in the early stages of design.

0 days 00 hr 00 min 00 sc

Simulation of an Ultrasonic Transducer (3D Ultrasonic Vibration Assisted Turning Tool)

Original price was: € 190.0.Current price is: € 161.0.

Since the invention of ultrasonic vibration assisted turning, this process has been widely considered and investigated. The reason for this consideration is the unique features of this process which include reducing machining forces, reducing wear and friction, increasing the tool life, creating periodic cutting conditions, increasing the machinability of difficult-to-cut material, increasing the surface quality, creating a hierarchical structure (micro-nano textures) on the surface and so on. Different methods have hitherto been used to apply ultrasonic vibration to the tip of the tool during the turning process. In this research, a unique horn has been designed and constructed to convert linear vibrations of piezoelectrics to three-dimensional vibrations (longitudinal vibrations along the z-axis, bending vibrations around the x-axis, and bending vibrations around the y-axis). The advantage of this ultrasonic machining tool compared with other similar tools is that in most other tools it is only possible to apply one-dimensional (linear) and two-dimensional (elliptical) vibrations, while this tool can create three-dimensional vibrations. Additionally, since the nature of the designed horn can lead to the creation of three-dimensional vibrations, there is no need for piezoelectric half-rings (which are stimulated by a 180-phase difference) to create bending vibrations around the x and y axes. Reduction of costs as well as the simplicity of applying three-dimensional vibrations in this new method can play an important role in industrializing the process of three-dimensional ultrasonic vibration assisted turning.

In this example, how to model all the components of an ultrasonic transducer and its modal and harmonic analysis are taught in full detail.

0 days 00 hr 00 min 00 sc

Simulation of Pitting Corrosion Mechanism with Scripting in Abaqus

Original price was: € 230.0.Current price is: € 195.0.
Pitting corrosion is a form of extremely localized corrosion that leads to the random creation of small holes in metal. It can occur with random sizes and distributions, typically modeled as conical or cylindrical shapes. This type of corrosion reduces the strength of structures and increases stress concentration. So, it can lead to various destructive effects such as pipes bursting and reduced resistance to internal pressure. By pitting corrosion simulation, you can assess how corrosion affects stress, vibration, heat transfer, and other factors. This is crucial for enhancing the durability and safety of structures such as storage tanks, shafts, tubes, pipes, and other industrial components. This tutorial includes two scripts for pitting corrosion analysis. They help you to conduct Abaqus pitting corrosion simulation for different examples including a simple plate and a shaft.
0 days 00 hr 00 min 00 sc

Dynamic Response of Rail Track Analysis Under a Moving Load

Original price was: € 190.0.Current price is: € 161.0.

Railway tracks are subjected to moving loads of trains and this causes vibration and degradation of the track. The judgment of these vibrations is important to design the railway tracks. Therefore, the rail track analysis become important. The design involves the permissible speed of trains and the maximum axle load of the train. The model given here creates a 3D geometry of a railway track and applies a moving load in the form of a wheel. A user can change the speeds and the properties of the material including geometry as per their needs.

0 days 00 hr 00 min 00 sc

continuously reinforced concrete pavement​ (CRCP) Analysis

Original price was: € 210.0.Current price is: € 178.0.
(1)

The increasing adoption of continuously reinforced concrete pavement (CRCP) in highway pavement design is driven by its demonstrated superior performance. Critical to evaluating the long-term effectiveness of CRCP is the understanding of early-age cracks, which has garnered significant interest from highway departments. This Abaqus Continuously reinforced concrete pavement modeling project aims to establish precise design parameters for CRCP and analyze the formation of crack patterns. By accounting for stress factors such as environmental conditions and CRCP shrinkage modeling, the project offers valuable insights into predicting the likelihood of crack initiation and propagation within the concrete slab. These insights are instrumental in enhancing the durability and performance of CRCP structures, thus advancing the efficiency and effectiveness of highway infrastructure.

0 days 00 hr 00 min 00 sc

Abaqus for Civil Engineering Part-1

Original price was: € 1424.0.Current price is: € 1210.0.
(1)
The "Abaqus for Civil Engineering” package is a comprehensive and invaluable resource designed to cater to the needs of civil engineering professionals, students, and enthusiasts alike. This all-inclusive package comprises a collection of several specialized tutorial packages, making it an essential tool for mastering various aspects of civil engineering. With this package, you gain access to an extensive library of high-quality video tutorials that cover a wide range of topics within civil engineering. Each tutorial provides clear, concise, and engaging explanations of fundamental concepts, advanced techniques, and practical applications.
0 days 00 hr 00 min 00 sc

Full Composite fatigue Add-on (Academic and industrial usage)

Original price was: € 1800.0.Current price is: € 1530.0.
This package is designed to instruct users on how to utilize the composite fatigue modeling Add-on, which removes the need to write a subroutine for composite fatigue modeling. Instead, users can select the composite type, input material properties, and generate the subroutine by clicking a button. The Add-on includes four types of composites, and the generated subroutine for all types is the UMAT. These four types are Unidirectional, Woven, short fiber composites (chopped), and wood. The fatigue criteria used for each type are the same as its respective package. For example, the fatigue criteria for woven composites are identical to that used in the "Simulation of woven composite fatigue in Abaqus" package. This Add-on provides a simple graphical user interface for composite fatigue modeling, which can be utilized for both academic and industrial applications.
0 days 00 hr 00 min 00 sc

Full Composite damage Add-on (Academic and industrial usage)

Original price was: € 1800.0.Current price is: € 1530.0.
(15)
This package will teach you how to use the composite damage modeling Add-on. The Add-on eliminates the need for writing a subroutine for composite damage modeling. Instead, you only need to select the desired composite type, input the material properties, and click a button. The Add-on will then generate the subroutine for you. The Add-on includes four types of composites: Unidirectional, Woven, short fiber composites (chopped), and wood. The generated subroutine for all types is the VUSDFLD. The damage criteria used in each type is the same as the one used in its respective package. For instance, the damage criteria for the woven composite is identical to the one used in the "Simulation of woven composite damage in the Abaqus" package. This Add-on offers a user-friendly graphical user interface for composite damage modeling, which can be used for academic and industrial purposes.
0 days 00 hr 00 min 00 sc

Composite simulation for experts-Part-3

Original price was: € 1340.0.Current price is: € 1139.0.
(1)

Pay attention to the syllabus and availability file details. some of the packages are fully available and some of them are partially available. If this is partially available it takes at least two months to be completely available.

If you are a graduate or Ph.D. student, if you are a university professor or an expert engineer in the industry who deals with simulation software, you are definitely familiar with the limitations of this software in defining the material properties, loading or meshing, interaction properties, and etc. You have certainly tried to define the properties of materials based on advanced fracture theories in finite element software and are familiar with their limitations and problems. Now, here is your solution. Start writing subroutines in finite element software and overcome the limitations. With the tutorials in the Golden Package, you will learn how to write 8 subroutines in Abaqus software professionally.
0 days 00 hr 00 min 00 sc

Composite simulation for experts-Part-2

Original price was: € 1460.0.Current price is: € 1241.0.
(3)
Pay attention to the syllabus and availability file details. some of the packages are fully available and some of them are partially available. If this is partially available it takes at least two months to be completely available.

If you are a researcher, student, university professor, or  Engineer in the company in the field of composite materials, this training package in simulating these materials in Abaqus software is the best selection. This training package is the second part of the composite for expert package and is focusing on the Simulation of woven composite damage in Abaqus, Composite Fatigue Simulation, Analysis of Composite pressure vessel with Semi-Geodesic winding,  Simulation of composite Hashin damage in 3d continuum element  (UMAT-VUMAT-USDFLD), and  Abaqus composite modeling of Woven & Unidirectional + RVE method.

 
0 days 00 hr 00 min 00 sc