Simulation of woven composites damage in Abaqus

 320.0
(1)
Woven composites are net-shaped composite structures that are fully interconnected by their yarns. Like a piece of cloth, the yarns are weaved together as warp and weft to create a composite structure. This package includes several components. First, it begins with an introduction to woven composites. Next, it provides a detailed explanation of macro modeling and offers guidance on how to perform it. The damage criteria employed in this package is a modified version of the Hashin criteria specifically designed for woven composites. Furthermore, the package demonstrates how to model damage using the USDFLD subroutine and Hashin relations. The subroutine is thoroughly explained, line by line, and a workshop is conducted to facilitate learning and practical application. Finally, the subroutine's validity is confirmed through a verification process.

Damage simulation of short fibre composites with subroutine

 340.0
Short fiber composites consist of chopped fibers and a matrix, forming a discontinuous fiber-reinforced material, with fibers typically positioned either aligned or randomly within the matrix based on the intended application. In this training package, you will learn how to model the short fiber composite (SFC) damage in Abaqus based on this article: “Damage Modeling in Random Short Glass Fiber Reinforced Composites Including Permanent Strain and Unilateral Effect”. In the lesson one, you will learn the fundamentals such as the SFCs advantages, applications, and etc. Moving on to Lesson 2, the focus shifts to modeling Short Fiber Composites in Abaqus. The lesson introduces the critical decision between Macro and Micro modeling, which this package do a macro modeling. Lesson 3 advances the learning journey by exploring damage modeling in Short Fiber Composites, particularly through Dano's model. This macroscopic approach incorporates irreversible processes and internal variables, addressing anisotropic damage, unilateral effects, and residual effects. Lesson 4 bridges theory to practical application, guiding users on how to implement Dano's model in Abaqus through the VUSDFLD subroutine. The tutorial navigates through the subroutine's flowchart, explaining each line sequentially. Complementing the lessons are two workshops. Workshop 1 features a 2D composite plate with a hole using plane stress elements, offering a detailed breakdown of material properties, boundary conditions, and simulation procedures. Workshop 2, mirroring the first, employs shell elements, showcasing variations in element types while maintaining consistency with the utilization of the VUSDFLD subroutine.

Bio-Mechanical Abaqus simulation Full package

Original price was: € 380.0.Current price is: € 342.0.
(4)

This video tutorial package offers a comprehensive guide to biomechanical simulations using Abaqus, covering a range of applications from dental to orthopedic and cardiovascular analyses. The workshops delve into finite element method (FEM) simulations, exploring static loading on human teeth, crack growth in bones under bending, bone drilling, and the behavior of titanium foam implants. Each tutorial emphasizes the importance of precise modeling and meshing techniques, utilizing dynamic explicit procedures, Johnson-Cook material models, and various contact and boundary conditions to simulate realistic biomechanical behaviors. Additionally, the package includes fluid-structure interaction (FSI) simulations for blood flow within coronary vessels, addressing both Newtonian and non-Newtonian models, and demonstrates the integration of computational fluid dynamics (CFD) with structural analysis for enhanced accuracy. The lessons complement the workshops by introducing fundamental FEM concepts, solver selection, explicit analysis considerations, and damage modeling, ensuring users gain a solid understanding of both theoretical and practical aspects of biomechanical simulations in Abaqus.

   
0 days 00 hr 00 min 00 sc

Abaqus Soil Modeling Full Tutorial

Original price was: € 280.0.Current price is: € 252.0.
(10)
All facets of soil modelling and simulation are covered in this full tutorial. The package includes twenty titles on topics such as soil, saturated soil, TBM, earthquake, tunnel, excavation, embankment construction, geocell reinforced soil, geosynthetic-reinforced soil retaining wall, soil consolidation in interaction with the concrete pile, earthquake over gravity dam, infinite element method, sequential construction, calculation of the total load capacity of the pile group, bearing capacity of the foundation. Package duration: +600 minutes  
0 days 00 hr 00 min 00 sc

Abaqus steel material and structures Full Tutorial

Original price was: € 490.0.Current price is: € 441.0.
(3)
Here in this training package, numerous models of crack steel material structures modeling, such as the shear failure, FLD criterion and different metal damage theories in concrete, steel, dams, and bones are examined through ten step-by-step tutorials. Every tutorial includes all needed files and step-by-step English videos and is explained from A to Z.
 
0 days 00 hr 00 min 00 sc

Abaqus Crack Growth Full Tutorial

Original price was: € 410.0.Current price is: € 369.0.
(12)
Here in this training package, numerous methods of crack propagation modeling, such as the XFEM and H integral and so on, in concrete, steel, dams, bones, and other materials are examined through ten step-by-step tutorials. Every tutorial includes all needed files and a step-by-step English videos and is explained from A to Z. Package duration: +300 minutes  
0 days 00 hr 00 min 00 sc

Balsa wood fatigue simulation with Abaqus subroutine

 320.0
(1)
This training package focus on writing subroutines to simulate wood fatigue in Abaqus. In the "Balsa wood fatigue simulation with subroutine" package, the used fatigue theory of wood has been described. Then, the flowchart of the subroutine and writing subroutine line-by-line is explained. It helps users to develop the subroutine based on customized theory. Finally, the subroutine is implemented on the Abaqus model, and the results are discussed.

Fatigue damage simulation of short fibre composites with subroutine

 340.0
Fatigue failure in materials occurs when repetitive or fluctuating stresses, below the ultimate strength and often below the yield limit, lead to sudden and unpredictable failure, making it a significant concern in engineering due to its potential for catastrophic consequences. The reinforced part of the fiber-reinforced composites can be categorized as continuous or discontinuous, with the latter referred to as short fiber-reinforced composites. In this training package, the fatigue of short (chopped) fiber composites is explained. Two fatigue damage models are presented for short fiber composites: Nouri fatigue damage model and Avanzini fatigue damage model. The Nouri’s model is applicable for composites with orthotropic behavior. But the Avanzini’s model has considered the fiber distribution in the matrix to be homogeneous and random. It has assumed the material behavior to be isotropic. Also, Nouri's model was developed for strain-controlled test, but Avanzini's model was developed for stress-controlled test. In this tutorial, we use the Avanzini’s model, which is base on this article: “Fatigue behavior and cyclic damage of peek short fiber reinforced composites”. This article has implemented the USDFLD subroutine, but we use the UMAT subroutine, which is more accurate than USDFLD since the material strength and properties reduction is smooth. A standard test specimen is used in this simulation to model such behavior. You will learn the details in the package.

Simulation of cohesive fatigue in Abaqus with subroutine

 280.0
In this training package, cohesive fatigue based on Khoramishad's model has been implemented in the USDFLD subroutine and used on a single joint connection

Simulation of woven composite fatigue in Abaqus

 420.0
(2)
The training package focuses on simulating woven composite fatigue using Abaqus software and the modified Hashin fatigue damage model based on the article titled  "Life prediction of woven CFRP structure subject to static and fatigue loading ". Woven composites have high strength and stiffness-to-weight ratios, but the interlacing pattern can affect stress distribution and damage mechanisms, making fatigue analysis crucial. The package includes four lessons covering different types of composite fatigue models, material characterization, generalization of the failure model, and the implementation of the UMAT subroutine. Two workshops provide hands-on experience in implementing the UMAT subroutine on one element in cyclic tension and a complex model. Fatigue analysis predicts material behavior under cyclic loading and helps design safe and reliable structures.

UMAT Subroutine (VUMAT Subroutine) in ABAQUS-Free Version- UMAT Abaqus example

 0.0
(16)
This package includes the free version of the two following packages. The following packages include 11 workshops for writing different types of subroutines and give you instructions and points to write your own UMAT/VUMAT subroutine. Here, a UMAT Abaqus example is free to download.

"UMAT Subroutine (VUMAT Subroutine) introduction" is used when the material model is not available in ABAQUS software. If you follow this tutorial package, including standard and explicit solver, you will have the ability to write, debug and verify your subroutine based on customized material to use this in complex structures. These lectures are the introduction to writing advanced UMAT and VUMAT subroutines in hyperelastic Martials, Composites, and Metal, and so on. Watch Demo

"Advanced UMAT Subroutine (VUMAT Subroutine)" training package helps Abaqus users to prepare complex UMAT and VUMAT subroutines. This training package is suitable for those who are familiar with subroutine or want to learn UMAT/VUMAT subroutine Professionally. Equations for computational plasticity based on kinematic stiffness are also discussed. In addition, metal damage has been implemented based on Johnson Cook's model. Watch Demo

Simulation of SMA in Abaqus with UMAT

 320.0
(4)
Shape-memory alloys (SMAs) have the ability to recover their original shape, thanks to the shape-memory effect and superelasticity. These unique characteristics have led to the broad usage of SMAs in engineering and medical applications. Simulations offer cost-effective methods for analyzing SMAs’ behavior, ultimately enhancing their reliability and performance. Consequently, researchers frequently employ simulations to investigate SMA-based systems. This educational package begins by exploring the fundamentals of SMA wires, presenting their various types and specific capabilities. It then provides the necessary constitutive equations to describe the behavior of SMAs in simulation. The package includes a flowchart and a step-by-step guide for writing a subroutine to model SMAs in Abaqus. Users will also discover a workshop that uses Abaqus to simulate the superelasticity effect in SMA wires. This workshop not only offers guidance on the simulation and the implementation of the subroutine, but also compares the result with an analytical solution for verification.

Simulation of composite Hashin damage in 3d continuum element in Abaqus (UMAT-VUMAT-USDFLD)

 250.0
(11)
In this training package, the 3D continuum HASHIN damage initiation model is prepared via three subroutines (USDFLD, UMAT and VUMAT).This training package teach you subroutines line-by-line. It should be noted that after damage initiation, failure occurs suddenly and in the form of a reduction in properties in the model. The HASHIN theory for this package is based on Kermanidis article titled” FINITE ELEMENT MODELING OF DAMAGE ACCUMULATION IN BOLTED COMPOSITE JOINTS UNDER INCREMENTAL TENSILE LOADING “.

Python scripting in ABAQUS Part 2

 240.0
This training package includes workshops that help you to learn about advanced Python scripting in Abaqus software. This is the most comprehensive tutorial containing advanced ways to write the Abaqus script. The subjects such as interrogation in output databases, Kernel plug-ins, RSG plug-ins, etc., are covered in this tutorial.

Lemaitre Damage model implementation with VUMAT Abaqus

 250.0
(17)
The Lemaitre damage model is now widely used to deal with coupled damage analyses for various mechanical applications. In this package, Firstly, we try to introduce the Lemaitre damage model, including damage mechanics and formulation of the Lemaitre damage model. Then, writing the Lemaitre subroutine is reached step by step. To do this job, the flowchart of the subroutine, Writing the subroutine line by line, implementation of the subroutine in one element and verification is done. In the last chapter, we implement this subroutine in a complex problem, the upsetting process.  

Python scripting in ABAQUS-(FREE Version)

 0.0
(14)
This training package(free version) includes one of three and two of five workshops that help you to partially learn how to use Python scripting in Abaqus software. This is likewise the most comprehensive tutorial for the script, and it is appropriate for beginners to advanced users. The subjects such as parameterization, optimization, sequential running and etc. are covered in this tutorial. To access the full version of this package, click here. It should be mentioned, that the free version of this package, it is not included software files and scripts.  

Abaqus for beginners (Mechanical Engineering)-Free Version

 0.0
(17)
In this Free version of the training package, which is designed for beginners in mechanical engineering, two lessons from the original package are presented. This package is provided the necessary points and theories for simulation. With this training package, you will be able to get acquainted with different ABAQUS modules in the form of various examples in modeling, how to get the output and the necessary results for reporting. You can download the syllabus of this package here. You also could find the demo of the package on our YouTube channel at this link.

Thermal Heat Transfer in Abaqus

Original price was: € 120.0.Current price is: € 108.0.
(11)
This package is related to Thermal Analysis in Abaqus. This package helps Abaqus users to simulate professionally. In general, Abaqus can solve the following types of heat transfer problems (For thermal and thermo-mechanical problems):
  • Uncoupled heat transfer analysis 
  • Sequentially coupled thermal-stress analysis
  • Fully coupled thermal-stress analysis
  • Adiabatic analysis
 
0 days 00 hr 00 min 00 sc

Introduction to VUEL Subroutine in ABAQUS

 210.0
(3)
VUEL is the UEL subroutine for the Explicit solver. UEL is for the Standard solver, and VUEL is for the Explicit solver. Of course, there are some other differences between these two subroutines as well, such as in inputs, variables, etc. This tutorial package is used for writing the most sophisticated subroutines in ABAQUS, VUEL, which are applicable to customized problems. The stiffness matrix and nodal forces are the output of the subroutine, which can be defined based on several variables. This tutorial package contains two workshops: the first is divided into three sections, which model truss elements, and the second workshop explains how to use VUEL and VUMAT subroutines in one model.

Composite simulation for experts-Part-1

Original price was: € 930.0.Current price is: € 744.0.
(18)
If you are a graduate or Ph.D. student, if you are a university professor or an expert engineer in the industry who deals with simulation software, you are definitely familiar with the limitations of this software in defining the material properties, loading or meshing, interaction properties, and etc. You have certainly tried to define the properties of materials based on advanced fracture theories in finite element software and are familiar with their limitations and problems. Now, here is your solution. Start writing subroutines in finite element software and overcome the limitations. With the tutorials in the Golden Package, you will learn how to write 8 subroutines in Abaqus software professionally.

Python scripting in ABAQUS Part1

 195.0
(11)
This training package includes workshops that help you to learn how to use Python scripting in Abaqus software. This is likewise the most comprehensive tutorial for the script, and it is appropriate for beginners to advanced users. The subjects such as parameterization, optimization, sequential running and etc., are covered in this tutorial.

Abaqus Fatigue Tutorial

 45.0
(12)
This Abaqus fatigue tutorial package includes workshops that teach you the XFEM method to simulate crack growth. This tutorial package enables you to model crack propagation in any 2D and 3D dimensional model. In addition, you will learn about the Paris law, direct cyclic approach, traction-separation law, and other theories that help you to simulate a crack growth problem in this package

Analysis of Heat Transfer in Abaqus

 75.0
(1)
This Analysis of Heat Transfer in Abaqus package includes workshops that help you to fully learn how to simulate the temperature distribution and heat flux in solids under thermal loads. This tutorial package enables you to model thermal responses including all the modes of heat transfer, namely conduction, convection and radiation. The subjects such as using film conditions to simulate the convective heat transfer, the dissipation of the frictional heat generated, thermomechanical analysis and etc. are covered in this package

Professional Package

Original price was: € 750.0.Current price is: € 600.0.
(6)
As a professional Abaqus user, you have probably faced cases where you have to move meshes and elements during analysis. For example, there is such a need in the wearing process. In addition, to define the properties of materials based on advanced theories of elasticity or plasticity, you need programming within the software. Sometimes you may need to model different types of cohesive or many types of composite materials based on various methods of composite damage. In all these cases, be sure that the professional package will answer you. This package is designed and prepared for you who are professionals and work on the edge of knowledge topics in the field of mechanical engineering and damage mechanics. Sometimes you may need to use user-defined elements and change element configuration based on theories that you are using; for instance, it is needed to add more integration points in elements. In this case, you can use the UEL package in the “Professional Package”.