FREE ABAQUS TUTORIAL VIDEOS

Free Abaqus Course | 10 hours Video | +1000 Students | ️ Lifetime Access
HANDCRAFTED WITH INTEGRITY

Taste our products

You can find all free packages in different content including Abaqus for beginner and writing UMAT/VUMAT subroutine and Python scripting

FREE ABAQUS TUTORIAL PDF

abaqus tutorial ⭐⭐⭐Free Abaqus Course |10 hours Video  👩‍🎓+1000 Students   ♾️ Lifetime Access

✅ Module by Module Training                                  ✅ Standard/Explicit Analyses Tutorial

✅ Subroutines (UMAT) Training                    …           ✅ Python Scripting Lesson & Examples

…………………………                 …………………….. ……………  ……   ………………………………………………………..……..

What are our advantages?

How will Advanced Engineering Courses help me?

While working with ABAQUS, users might run into difficulties while defining the material properties, loading or meshing, interaction properties, and etc. If you are a graduate or Ph.D. student, a university professor or an expert engineer in the industry, using simulation software, our packages will help you simulate more professionally. Advanced engineering courses produced by CAE assistant will help you write your code easily in many engineering software.

How can we learn to write an Abaqus subroutine correctly?

Here below, I have listed some Abaqus basics – main subroutines that you may encounter when using Abaqus CAE at an advanced level as a graduate student or researcher. Good news for you! You can learn each subroutine you want by clicking on that (Abaqus tutorial).

UMAT Subroutine / Abaqus course Introduction to UEL SUBROUTINE in ABAQUSUVARM subroutine / Abaqus course UMESHMOTION Subroutine in ABAQUS-packageDFLUX subroutine in ABAQUS-packageUSDFLD AND VUSDFLD SUBROUTINES in ABAQUSUHARD Subroutine (UHARD Subroutine) in ABAQUS-packageUAMP subroutine (VUAMP Subroutine)in ABAQUS-package VFRICTION VFRIC ABAQUS / Abaqus course UHYPER Subroutine in ABAQUS / Abaqus course DISP AND VDISP SUBROUTINES in ABAQUS / Abaqus course UEXPAN and VUEXPAN SUBROUTINE / Abaqus course DLOAD subroutine / Abaqus course

CAE ASSISTANT

Get to know us with numbers

10000
Time Duration(Min)
120
Packages
600
Videos
80000
Subscriber

💿Abaqus for Beginners (Abaqus for Civil Engineering)

 290.0
(12)
In the present Abaqus tutorial for civil engineering package, we, "The CAE Assistant", have presented all the Abaqus basic skills that a civil engineer needs when he/she wants to use his/her engineering knowledge in computer-aided designing. Abaqus tutorial for civil engineering covers all your need to simulate concrete, reinforcements, buckling, frequency, damage, composite, cohesive and more topics related to Abaqus structural analysis tutorial. You can watch the demo video for more information.

Additive Manufacturing or 3D Printing Abaqus simulation

 440.0
(11)
3D printing is a process of creating three-dimensional objects by layering materials, such as plastic or metal, based on a digital design. 3D printing simulation involves using software to predict and optimize the printing process, allowing for more efficient and accurate production. This educational package includes two 3D printing modeling methods. The first method is based on the use of subroutines and Python scripting. After an introduction to the 3D printing process, the first method with all of its detail is explained; then, there would be two workshops for this method; the first workshop is for the 3D printing simulation of a gear with uniform cross-section and the second one is for a shaft with non-uniform cross-section. The second method uses a plug-in called AM Modeler. With this plug-in, the type of 3D printing can be selected, and after inserting the required inputs and applying some settings, the 3D printing simulation is done without any need for coding. Two main workshops will be taught to learn how to use this plug-in: "Sequential thermomechanical analysis of simple cube one-direction with LPBF 3D printing method using the trajectory-based method with AM plug-in" and "3D printing simulation with Fusion deposition modeling and Laser direct energy deposition method with AM plug-in".

Welding Simulation in ABAQUS

 270.0
(19)
This training package fully covers the various possible methods for welding simulation. First, an introduction to welding and two basic categories of welding, fusion and non-fusion welding. Next, the theories and the elements used to simulate the welding will be explained. These theories are Lagrangian, Eulerian, ALE, and SPH. After that, you will learn how to apply these theories with different methods, such as the death and birth of an element, DFLUX subroutine, etc. Next, we have discussed the simulation of two-pass gas metal arc welding Processes in Abaqus, in a manner that can be extended to multi-pass and other types of welding. This heat flux created by the electric arc is transferred to the welded parts and leads to a significant increase in temperature. To do so, we will use Goldak's Double Ellipsoid Heat Source Model with the DFLUX subroutine (Considering the death and birth of elements). Finally, you will learn how to simulate welding with the help of six workshops: Friction Stir Welding (FSW) simulation with the Eulerian element, Explosive welding simulation, simulation of FSW with the SPH method, Butt welding with death and birth of an element method, Simulation of Arc welding between two tubes with DFLUX subroutine (Thermomechanical Analysis), and simulation of Two-Pass Arc Welding (Including the Birth and Death of Elements) and Its Extension to Other Welding Types.

ABAQUS course for beginners | FEM simulation tutorial

 256.0
(13)
In this Abaqus course for beginners, which is designed for FEM Simulation students in mechanical engineering, various examples in the most widely used fields are presented. These examples are provided with the necessary points and theories for simulation. With this training package, you will be able to get acquainted with different ABAQUS modules in the form of various examples in modeling, how to get the output and the necessary results for reporting. You can download the syllabus of this package here. Watch Demo

Composite Fatigue Simulation with UMAT Subroutine in ABAQUS (unidirectional)

Original price was: € 420.0.Current price is: € 378.0.
(16)
The composite fatigue training package completely teaches how to simulate and analyze a fatigue composite model with the help of UMAT Subroutine in Abaqus software. In this training package, we have provided all the files needed for your training, including articles, theories, how to write subroutines, and software settings.

3D continuum Abaqus HASHIN progressive Damage for composite materials (VUMAT Subroutine)

Original price was: € 320.0.Current price is: € 288.0.
(20)

The Hashin failure criteria is a set of failure criteria developed specifically for composite materials. It predicts different failure modes in composites based on the stresses experienced by their constituents (fiber and matrix). The criteria are widely used in engineering and computational models to assess composite material performance under mechanical loading. The criteria, while highly efficient and widely used, pose challenges when implemented in numerical simulations. Abaqus has emerged as a powerful tool to address these challenges, enabling the prediction of damage initiation and its progression (via stiffness reduction) based on the Hashin criteria. However, a key limitation of Abaqus is its applicability being restricted to 2D plane stress elements. To overcome this limitation, we developed a VUMAT subroutine in this project. This custom subroutine extends the capabilities of Abaqus, allowing for the simulation of damage initiation and propagation in 3D problems in accordance with the Hashin criteria. It should be mentioned that this subroutine includes gradual progressive damage based on the energy method. This complex subroutine could be used for static and dynamic problems.

A notable point is that in one of our other packages, we also provide training on using Abaqus subroutines to analyze the Hashin criterion. However, in that package, damage occurs instantaneously. In the current package, we have modeled the progressive Damage, which is more complex but could be more beneficial for solving your specific problems.

Pipe Soil Interaction in Abaqus

 230.0

Pipe Soil Interaction refers to how buried pipelines and surrounding soil respond to loads and dynamic events, crucial for assessing the stability of pipelines used for water, gas, and oil distribution. This tutorial package includes six workshops that use Abaqus to simulate various soil-pipe scenarios. The tutorials cover the long-term load capacity of pipe piles under axial loads, and multiple simulations of coupled Eulerian-Lagrangian (CEL) explosions near or inside steel pipelines buried in soil. These simulations employ advanced material models like the Johnson-Cook plasticity for steel and Mohr-Coulomb plasticity for soil, along with the JWL equation for TNT explosions.

Workshops focus on both external and internal explosions, exploring how blast waves affect pipeline integrity and soil deformation. The tutorials emphasize critical aspects like stress, strain, and damage mechanics, offering detailed insights into pipeline behavior under extreme conditions. These simulations help engineers analyze blast loads and optimize the design of buried structures to withstand destructive forces.

Stress-strain characteristic of SFRC using recycled fibres | An Abaqus Simulation

 40.0

This training utilizes Abaqus software to simulate and analyze the stress-strain characteristics of Steel Fiber Reinforced Concrete (SFRC) using recycled fibers. The importance of this work lies in its contribution to sustainable construction practices by validating the effectiveness of recycled steel fibers in enhancing concrete's mechanical properties. Through advanced finite element analysis (FEA), the project addresses challenges in accurately modeling SFRC's post-cracking behavior, ensuring that the simulations are aligned with experimental data for reliable results. Abaqus' capabilities in nonlinear material modeling, stress-strain simulation, and principal stress analysis significantly improve the accuracy and reliability of the research, making it a valuable tool for both academia and industry.

Nonlinear Analysis of RC Columns Using ABAQUS | Validation with Experimental Data

 40.0

Reinforced Concrete (RC) columns are critical components in civil engineering, essential for the stability of buildings, bridges, and infrastructure during seismic events. This study leverages ABAQUS, a powerful finite element analysis (FEA) software, to simulate the seismic performance of RC columns. By modeling columns in 3D and using ABAQUS's advanced tools, we replicate experimental conditions to analyze their behavior under seismic loads. Numerical simulations offer the advantage of exploring various scenarios quickly and cost-effectively, while also allowing for extensive parametric studies. The study details how ABAQUS models both concrete and steel reinforcement, accounts for interaction effects, and applies appropriate loading and boundary conditions. The simulations provide valuable insights into failure modes, load-displacement responses, and crack patterns, offering a comprehensive understanding of RC column performance in seismic scenarios.

Analysis of Steel-Fiber Reinforced Concrete (SFRC) Beams with Abaqus

Original price was: € 40.0.Current price is: € 36.0.
Steel-Fiber Reinforced Concrete (SFRC) is an innovative composite material that enhances the structural integrity of traditional concrete by incorporating steel fibers, which improve toughness and ductility. This makes SFRC concrete particularly valuable in earthquake-prone regions, where its ability to resist cracking and absorb energy is critical. The analysis of SFRC concrete beams, through both experimental and numerical methods like finite element analysis (FEA) in Abaqus, provides insights into their behavior under seismic loads, highlighting benefits like enhanced energy dissipation and ductility. Such analysis is essential for designing resilient structures, offering significant advantages to engineers, construction companies, researchers, and policymakers.

Our Courses

Companies/ Institutes/Universities

Our Costumers

They have trusted us

Introduction to finite element method (FEM)

The finite element method (FEM) is a powerful tool used to analyze complex physical problems in engineering and science. Imagine you have a car engine – a very intricate system. FEM helps us understand how it behaves under different conditions.

Here’s the gist:

  • Divide and conquer: FEM breaks down the entire system (engine) into smaller, simpler pieces called finite elements. These elements could be tiny triangles, squares, or other shapes, forming a mesh over the system.
  • Math magic: Each element has mathematical equations describing its behavior. By applying these equations to all the elements and connecting them together, FEM builds a large set of equations for the entire system.
  • Computer power: Since solving these equations directly can be overwhelming, FEM relies on computers. Powerful software crunches the numbers to find approximate solutions for the whole system.

FEM is particularly useful when complex shapes or material properties make it difficult to solve the governing equations analytically. It’s widely used in various fields like:

  • Structural analysis: Predicting stress and strain in bridges, buildings, or airplane wings.
  • Heat transfer: Analyzing heat flow in engines or electronic devices.
  • Fluid flow: Simulating how fluids move around airplane wings or inside pipes.

FEM provides valuable insights for engineers and scientists, allowing them to design better, more efficient systems. While the inner workings involve complex math, the basic idea is that FEM tackles tough problems by breaking them into smaller, more manageable pieces.

1. What is Abaqus and Abaqus CAE?

Abaqus is a software suite specifically designed for finite element analysis (FEA). FEA is a powerful computer simulation technique used by engineers to predict how complex structures will behave under different conditions. Imagine a bridge design – this software can be used to simulate how the bridge will respond to wind loads, traffic, or even an earthquake. (Abaqus tutorial)

Read more

ABAQUS TUTORIAL

Download the best resources on Abaqus tutorial !

Abaqus tutorial | Basics to Advanced

It is a software program used for pre-processing (modeling and analyzing mechanical parts and assemblies) and viewing finite element analysis results. If you are new to the software, our “free tutorial” improves your basic knowledge of Abaqus. “The beginners” course is the best Abaqus basics training on the web. Here you can find some tutorial PDFs that include practical examples of software and useful description of how to model them. In the free video tutorial packages or student tutorials, just some parts of the training packages are presented. If you are interested, you can find complete packages on the CAE Assistant shop.

FEA is a topic that is well worth learning for a mechanical engineer. You won’t regret doing it. The following advice will guide you in your education and help you become an expert in FEA, and the Abaqus training available here can boost your learning path.
  • Start with your education in the specific field of Mechanics/ physics you want to simulate.
  • Engage in FEA basic courses such as the above tutorial videos.
  • Study modeling techniques rather than merely learning software.
  • Recognize how your mechanical problem behaves.
  • Always strive to comprehend anything thoroughly.
  • Begin with simple problems.
  • Practice often and intensify your efforts.
  • Attend FEA courses (For example, Abaqus trainings)
  • Study your peers’ work.
  • Be patient; becoming a specialist takes time.

Why Abaqus Training matters?

Abaqus Training is essential for engineers, analysts, and researchers who seek to enhance their skills in finite element analysis (FEA). Abaqus is a powerful software suite used to simulate the physical response of materials and structures under various conditions, including stress, heat, and fluid flow. Mastery of this tool through structured Abaqus Training is crucial as it enables professionals to conduct complex simulations accurately, leading to better product designs, improved safety, and optimized performance across industries such as automotive, aerospace, and civil engineering.

Read more

Abaqus Modules Video Tutorial

A full Abaqus environment, Abaqus/CAE offers a straightforward, consistent user interface for creating, submitting, tracking, and assessing the results of Standard and Explicit simulations. Each module defines a logical step in the modeling process, such as specifying the geometry, defining the properties of the materials, and creating a mesh. Building the model used by Abaqus/CAE to produce the input file you give to the Standard or Explicit analysis product happens as you progress through the modules. The analysis tool performs the analysis, provides data to Abaqus/CAE so you can keep track of the job’s development, and creates an output database. Here, in the below training videos, you can get enough information about the modules and start simulating in this software.

Users ask these questions

When you search for the Abaqus tutorial, you encounter questions that users ask; some are common questions such as “What is the Abaqus unit system?” and some are specific. So, we decided to help the users and answered a few of them which you can see them below:

I. Substituting a 3D FEA problem to axisymmetric model

Q: Hello, everyone. How can an axisymmetric analysis of the identical problem replace a three-dimensional FE analysis of a threaded screw (inserted into a material with an insertion torque)? If you have any good references, please share them with us. Best wishes.

A: Hello,

It’s impossible to substitute a 3D threaded screw with an axisymmetric model. Because its geometry won’t allow us. I mean, the threads of the screw are not symmetric.

Best regards. 

II. Friction

Q: Should I put friction in any contact in my analysis? When can I use the “Frictionless” option in my analysis? How much value the friction coefficient should have?

A: In general, do not define any friction in contacts unless necessary. However, in a few cases, a simulation with high friction value will converge better. The ABAQUS/Standard will automatically use the asymmetric matrix storage if any friction value becomes greater than 0.2.

III. Saving node coordinates in a file

Q: when I query some coordinate points in Abaqus (through Tools -> Query), they normally appear in the message area. It is not saved in Abaqus’.rpy or.jnl files. Is there a way to record the coordinate points and then automate the process later with scripting? Based on a nonlinear tool path for AM, I want to define and activate a set of elements for thermal analysis. Query is currently the only way to obtain the coordinates. I’m searching for ways to automate it with scripting, but the query choices in Abaqus aren’t saved in.rpy or.jnl files.

A: Hello,

To save the coordinates of the nodes, you simply should select a variable named “COORD” from the Field Output (see figure 1). Then, you can get a report from it in the Visualization module after you run the job, and the coordinates will be saved in a file with extension “.rpt” (see figures 2 and 3).

abaqus tutorial

Figure 1

abaqus tutorial

Figure 2

abaqus tutorial

Figure 3

IV. Meshing and analyzing a model

Q: I’m creating a model of a structure built of stone arrangements. Because the number of instances is so large, meshing and analyzing the assembly as a 3D deformable body fails due to my computer’s physical memory limit of 64 GB. Is there a way to test the stability of these blocks without having to mesh them?

A: Hi,

It’s not possible to do this without meshing. However, I recommend using the Submodeling technique. Analyze your model with less mesh and larger meshes. Find the critical sections, then use the Submodeling technique.

Also, I have some recommendations to speed up your simulation:

  • Use mass scaling if you are using the “Dynamic, Explicit” step.
  • If your model is quasi-static, increase the mass artificially.
  • You can change the time period and the size of the meshes as well.

You can refer to the links below to acquire more information. It’s worth a look.

Speeding up quasi static analysis in Abaqus | Increasing load rate

Differences between ABAQUS Standard & Explicit

Abaqus Tutorial for Beginners ( Tutorial for Civil Engineering)

Best wishes.

✅ Subscribed students +80,000
✅ Upcoming courses +300
✅ Tutorial hours +300
✅ Tutorial packages +100

IV. Meshing and analyzing a model

Q: I’m creating a model of a structure built of stone arrangements. Because the number of instances is so large, meshing and analyzing the assembly as a 3D deformable body fails due to my computer’s physical memory limit of 64 GB. Is there a way to test the stability of these blocks without having to mesh them?

A: Hi,

It’s not possible to do this without meshing. However, I recommend using the Submodeling technique. Analyze your model with less mesh and larger meshes. Find the critical sections, then use the Submodeling technique.

Also, I have some recommendations to speed up your simulation:

  • Use mass scaling if you are using the “Dynamic, Explicit” step.
  • If your model is quasi-static, increase the mass artificially.
  • You can change the time period and the size of the meshes as well.

You can refer to the links below to acquire more information. It’s worth a look.

IV. Meshing and analyzing a model

Q: I’m creating a model of a structure built of stone arrangements. Because the number of instances is so large, meshing and analyzing the assembly as a 3D deformable body fails due to my computer’s physical memory limit of 64 GB. Is there a way to test the stability of these blocks without having to mesh them?