Showing 1–24 of 162 results

Abaqus Kelvin Voigt Model (Viscoelastic) Simulation Using UMAT and VUMAT Subroutines

 270.0

This research presents a precise three-dimensional mechanical response of viscoelastic materials using Abaqus kelvin voigt viscoelastic model. We performed this kelvin voigt model Abaqus simulation using both UMAT and VUMAT subroutines for standard and explicit solvers.

The behavior of viscoelastic materials is a state between the behavior of a liquid and a solid. In other words, they behave both like liquids and solids. That is to say, there are many natural and synthetic materials that are classified as viscoelastic materials; From the biological structures of the body such as skin, cartilage and tissue to concrete, foams, rubbers, and synthetic polymers. Due to these unique properties, viscoelastic materials have many applications.

In this regard, the primary goals of this study include the development and implementation of an accurate three-dimensional Abaqus kelvin voigt viscoelastic model, and the integration of viscoelastic properties into the analysis, which can improve the prediction of viscoelastic materials response under different boundary and loading conditions.

This tutorial, by customizing the UMAT and VUMAT subroutines to simulate flexible samples behavior, contributes to the advancement of viscoelastic materials design and analysis.

Concrete Damage Plasticity Simulation of FRP-Confined Concrete Columns in Abaqus

Original price was: € 280.0.Current price is: € 252.0.

This tutorial package provides a comprehensive guide to simulating fiber-reinforced polymer (FRP)-confined concrete columns using the Concrete Damaged Plasticity Model (CDPM) in Abaqus, based on a detailed finite element method (FEM) analysis from the associated research paper. The tutorial focuses on key modeling aspects such as material definition, boundary conditions, meshing, and the inclusion of a custom subroutine (USDFLD) for precise control of concrete behavior under confinement.

In this tutorial, you will learn how to implement a modified CDP model, which includes strain hardening and softening rules, and a new concrete dilation model calibrated for FRP-confined concrete. The package also explains the usage of the USDFLD subroutine to modify material properties dynamically during simulation, ensuring a more accurate representation of the concrete's behavior under triaxial stress states. By following the detailed steps in this tutorial, you will be able to create and analyze advanced FEM simulations in Abaqus with a focus on confined concrete.

0 days 00 hr 00 min 00 sc

Computational Predictions for Predicting the Performance of Structure

Original price was: € 340.0.Current price is: € 306.0.

This package focuses on developing and applying predictive models for the structural analysis of steel and concrete components subjected to fire and subsequent earthquake loading. To accurately simulate the complex behavior of these structures, finite element analysis (FEA) using ABAQUS is employed. The Taguchi method optimizes the number of samples needed for FE analysis, and this method is used with SPSS after explanation its concept. However, due to the computational demands of FEA, various machine learning techniques, including regression models, Gene Expression Programming (GEP), Adaptive Network-Based Fuzzy Inference Systems (ANFIS), and ensemble methods, are explored as surrogate models. These models are trained on large datasets of FEA results to predict structural responses efficiently. The performance of these models is evaluated using statistical metrics such as RMSE, NMSE, and coefficient of determination.

0 days 00 hr 00 min 00 sc

Damage Prediction in Reinforced Concrete Tunnels under Internal Water Pressure

Original price was: € 370.0.Current price is: € 333.0.

This tutorial package equips you with the knowledge and tools to simulate the behavior of reinforced concrete tunnels (RCTs) subjected to internal water pressure. It combines the power of finite element (FE) modeling with artificial intelligence (AI) for efficient and accurate analysis. The Taguchi method optimizes the number of samples needed for FE analysis, and this method is used with SPSS after explanation its concept.

By leveraging Artificial Intelligence (AI) techniques such as regression, GEP, ML, DL, hybrid, and ensemble models,  we significantly reduce computational costs and time while achieving high accuracy in predicting structural responses and optimizing designs.

0 days 00 hr 00 min 00 sc

Soft Body Impact on Laminated Composites: A Comprehensive Tutorial Package

Original price was: € 380.0.Current price is: € 342.0.

This comprehensive tutorial package focuses on simulating soft body impacts on laminated composite materials using the Finite Element Method (FEM) in Abaqus. The course covers key topics such as soft body modeling, metal material modeling, composite material modeling, composite to composite interface modeling, metal to composite interface modeling, interaction between soft bodies and FML, interaction between layers, and Python scripting for parametric studies. Users will explore different material models and learn about impact failure mechanisms, including matrix failure, fiber failure, shear failure, and delamination. The course is structured into lessons that cover theoretical aspects, followed by hands-on workshops to model soft body impacts, apply material properties, and analyze post-processing results such as forces, displacements, and energy dissipation. It also includes an advanced section on Python scripting, enabling users to automate parametric studies for complex simulations. This package is ideal for engineers, researchers, and students looking to deepen their understanding of soft body impact phenomena and composite material behavior.

0 days 00 hr 00 min 00 sc

Computational Modeling of Steel Plate Shear Wall (SPSW) Behavior

Original price was: € 320.0.Current price is: € 288.0.

This course equips engineers with the tools to design and analyze Steel Plate Shear Walls (SPSW) and Reinforced Concrete Shear Walls (RCSW) subjected to explosive loads. Traditional Finite Element (FE) simulation is time-consuming and requires numerous samples for accurate results. This package offers a more efficient approach using Artificial Intelligence (AI) models trained on FEA data. You'll learn to develop FE models of SPSW and RCSW in ABAQUS software, considering material properties, interactions, and boundary conditions. The Taguchi method optimizes the number of samples needed for FE analysis, and this method is used with SPSS after explanation its concept.

We then delve into AI modeling using MATLAB. Explore various methods like regression, Machine Learning (ML), Deep Learning (DL), and ensemble models to predict the behavior of SPSW and RCSW under blast loads. Statistical analysis helps compare model accuracy. By combining FE analysis with AI models, you'll gain a powerful tool for designing blast-resistant structures while saving time and resources.

0 days 00 hr 00 min 00 sc

Bypass Viscous Damper Performance Assessment in 8-story structure | Seismic Behavior in Masonry Cladding

Original price was: € 230.0.Current price is: € 207.0.

In this package, the dynamic behavior of a developed bypass viscous damper is evaluated. The developed bypass viscous damper is an advanced seismic protection device that features a flexible, high-pressure hose as an external orifice, which acts as a thermal compensator to reduce viscous heating during dynamic events. This damper's performance can be adjusted by modifying the hose's dimensions, enabling precise control over its damping properties. The package includes comprehensive simulations and experimental validations using CFD models in ABAQUS and structural analysis in SAP2000. A simplified design procedure for incorporating these dampers into structures is also provided, demonstrated through the case study of an 8-story hospital, showing reduced structural demands and improved performance of nonstructural elements during seismic events.

0 days 00 hr 00 min 00 sc

Abaqus advanced tutorials on concrete members

Original price was: € 250.0.Current price is: € 225.0.

Welcome to the "Abaqus Advanced Tutorials on Concrete Members" course, designed to provide civil and structural engineers with cutting-edge expertise in finite element modeling (FEM) and simulation using Abaqus. This advanced-level course focuses on the detailed modeling of complex concrete and composite columns under various loading conditions. Topics include the simulation of tubed reinforced concrete columns, concrete-filled double skin steel columns, and fiber-reinforced polymer (FRP) composite columns. Participants will delve into axial and eccentric compression loading scenarios, with a special focus on hollow and tapered cross-sections. The course also emphasizes comparing simulation results with experimental data from published research, ensuring practical relevance and accuracy. By the end of the course, learners will be equipped with the necessary skills to tackle advanced structural analysis challenges using Abaqus, reinforcing their understanding of concrete member behavior in real-world applications.

0 days 00 hr 00 min 00 sc

Post-Fracture Analysis of Glass with Abaqus

Original price was: € 140.0.Current price is: € 126.0.

This tutorial explores a finite element method (FEM) simulation using Abaqus to analyze the post-fracture behavior of structural glass members retrofitted with anti-shatter safety films. It focuses on simulating the vibration response of cracked glass elements under repeated impacts and temperature gradients, following the methodology outlined in the research article "Effects of post-fracture repeated impacts and short-term temperature gradients on monolithic glass elements bonded by safety films".

Key aspects include modeling glass fracture, assigning material properties, and defining boundary conditions to assess the vibration frequency and load-bearing capacity of cracked glass members. Additional topics cover dynamic identification techniques, performance indicators for glass retrofit efficiency, and frequency sensitivity analysis under various operational and ambient conditions. The simulation results help quantify the residual strength of safety films in post-fracture scenarios, providing a robust framework for structural engineers to extend this investigation to other glass configurations.

This tutorial is ideal for users who want to understand FEM modeling in Abaqus and perform detailed simulations involving complex material interactions, with a focus on practical applications in glass retrofit technology.

0 days 00 hr 00 min 00 sc

Machine Learning for Composite Materials with Abaqus

Original price was: € 380.0.Current price is: € 342.0.

This tutorial package delves into an advanced inverse modeling approach for predicting carbon fiber properties in composite materials using a machine learning (ML) technique. Specifically, it covers the use of Gaussian Process Regression (GPR) to build a surrogate model for accurate predictions of fiber properties based on data from unidirectional (UD) lamina. By leveraging Finite Element (FE) homogenization, synthetic data is generated for training the GPR model, accounting for variations in fiber, matrix properties, and volume fractions. This framework’s efficiency and accuracy are validated using real-world data, highlighting its potential as a computational alternative to traditional experimental methods. The package includes detailed explanations, case studies, and practical exercises, equipping users with hands-on experience in applying this ML-based approach to composite material analysis.

0 days 00 hr 00 min 00 sc

Laser Assisted Machining (LAM): Modeling and Simulation in Abaqus/CAE

Original price was: € 310.0.Current price is: € 279.0.

In this tutorial, a comprehensive discussion on modeling and simulation of laser assisted machining is presented. It includes building FEM-based models of machining, laser heating, and laser-assisted machining models in Abaqus/CAE. The finite element method (FEM) simulation is based on the coupled thermo-mechanical behavior. The package walks learners through building models that simulate the impact of laser heating on the workpiece. Detailed lessons cover constructing basic machining and laser heating models, setting boundary conditions like cutting speed and laser power, and writing subroutines such as DFLUX and VDFLUX to simulate laser heat sources. Additionally, learners will perform analyses to study temperature distribution, and stress-strain behavior. Through parametric analysis and comprehensive result evaluation, learners will gain a deep understanding of temperature distribution, stress behavior, and how laser heating can improve the machining process.

0 days 00 hr 00 min 00 sc

Bolting Steel to Concrete in Composite Beams: ABAQUS Simulation Validated Against Experiments

 140.0
Composite beams with welded stud shear connectors pose challenges in terms of disassembly and reuse, which impacts their sustainability. By bolting steel to concrete, we can aquire a more sustainable alternative, facilitating easier disassembly and reuse. Engineers value concrete-steel bolted shear connections for their fatigue resistance, secure connections, and ease of disassembly. These factors make them suitable for various applications. Proper design is crucial for these connections to ensure effective shear force transfer and durability. This project provides valuable insights into analyzing bolted concrete-steel connections. It helps utilizing advanced modeling techniques in ABAQUS to simulate their behavior under different loading conditions. By addressing the benefits and challenges of experimental and numerical methods, this project enhances our understanding of composite connections. It enables improved construction practices. To ensure model’s accuracy, we compared the results with the experimental data, for steel concrete bolts. The project specifically helps you to simulate the bahavior of steel concrete composite beams in the following paper. “A study on structural performance of deconstructable bolted shear connectors in composite beams”  

Inherent strain method in Metal Additive Manufacturing simulation (using subroutines and Python scripting in Abaqus)

Original price was: € 250.0.Current price is: € 225.0.

Additive Manufacturing (AM), a revolutionary layer-by-layer fabrication technology, is transforming how products are designed and manufactured. This comprehensive tutorial package focuses on the Inherent Strain (IS) method, a highly efficient numerical approach for simulating the Laser Powder Bed Fusion (LPBF) process in metal additive manufacturing. The detailed thermo-mechanical simulation of the Laser Powder Bed Fusion (LPBF) for complex geometric parts requires a large number of time steps to estimate residual stress and distortion, which is not computationally cost-effective. Furthermore, based on the large thermal gradient near the heat source, the mesh size must be sufficiently small to accurately predict the induced residual stress and distortion of the deposited layers in the heat-affected zone. Therefore, applying a coupled thermo-mechanical analysis for multiple laser scans with a fine mesh model to macro-scale simulation would incur excessively large computational costs.

Additionally, the large number of degrees of freedom for each element in the mechanical analysis leads to higher complexity as well as a longer amount of processing time. Detailed thermo-mechanical analysis for an industrial component is almost impractical since it would demand hundreds of terabytes of memory and years to calculate. Therefore, to overcome the huge computational burden associated with the numerical simulation of the LPBF caused by the infinitesimal laser spot size and thousands of thin layers with a thickness at the micron level, the Inherent Strain Method in additive manufacturing has been widely used in research and commercial software.

In this tutorial, the Inherent Strain Method additive manufacturing approach is presented both theoretically and practically in Abaqus. An agglomeration approach will be considered to transfer an equivalent inherent strain from both micro-scale and macro-scale modeling strategies. The implementation of this approach is explained step by step, accompanied by various workshops in micro-scale and macro-scale models for different geometries. This training package enables you to write your subroutine codes and Python scripting, as well as have more control over the LPBF process simulation.

0 days 00 hr 00 min 00 sc

3D Simulation of Gurson-Tvergaard-Needleman (GTN) Damage Model

 190.0
The GTN (Gurson-Tvergaard-Needleman) damage model is a robust continuum damage model used to simulate ductile fracture in materials. It accounts for porosity, a key damage parameter, to predict material behavior under various loading conditions. The model's benefits include comprehensive fracture analysis, accurate damage prediction, versatility, and enhanced simulation capabilities. Despite these advantages, implementing the GTN model in software like Abaqus (GTN model Abaqus) is challenging. It is due to the need for custom subroutines, such as VUMAT. However, writing the subroutine requires proficiency in Fortran programming and an understanding of finite element analysis. This project provides a detailed guide for using the VUMAT subroutine to define the GTN model in Abaqus. It addresses challenges like high computational costs and the need for extensive experimental data. The tutorial demonstrates the model's application in material design, failure analysis, structural integrity assessment, research and development, and manufacturing process simulation. By exploring stress distribution, nodal temperatures, and displacement fields, the project aims to enhance the understanding and predictive capabilities of the GTN damage model.

Viscoplasticity Abaqus Simulation Using UMAT Subroutine | Perzyna Viscoplastic Model

Original price was: € 270.0.Current price is: € 243.0.

Viscoplasticity describes the rate-dependent inelastic behavior of materials, where deformation depends on both stress magnitude and application speed. This concept is crucial in many engineering applications, such as designing structures under dynamic loads, modeling soil behavior during earthquakes, and developing materials with specific mechanical properties. Viscoplasticity Abaqus simulation, especially using Abaqus with UMAT subroutines, are vital for understanding, predicting, and optimizing the behavior of viscoplastic materials. This tutorial focuses on implementing the Perzyna viscoplasticity model in Abaqus. The Perzyna viscoplastic model, a strain rate-dependent viscoplasticity model, relates stress to strain through specific constitutive relations. This involves defining plastic strain rate based on stress state, internal variables, and relaxation time. The tutorial provides general UMAT codes for viscoplastic analysis, yielding results like stress fields essential for various engineering applications. These simulations help in predicting permanent deformations, assessing structural failure points, and analyzing stability under different loads, benefiting fields such as aerospace, automotive, civil engineering, and energy.

0 days 00 hr 00 min 00 sc

Pultrusion Crack Simulation in Large-Size Profiles | Pultrusion Abaqus

Original price was: € 250.0.Current price is: € 225.0.
(10)

Pultrusion is a crucial task for producing constant-profile composites by pulling fibers through a resin bath and heated die. Simulations play a vital role in optimizing parameters like pulling speed and die temperature to enhance product quality and efficiency. They predict material property changes and aid in process control, reducing reliance on extensive experimental trials. However, simulations face challenges such as accurately modeling complex material behaviors and requiring significant computational resources. These challenges underscore the need for precise simulation methods to improve Pultrusion processes. This study employs ABAQUS with user subroutines for detailed mechanical behavior simulations, including curing kinetics and resin properties. Key findings include insights into crack formation (pultrusion crack simulation), material property changes, and optimization strategies for enhancing manufacturing efficiency and product quality. This research (pultrusion Abaqus) provides practical knowledge for implementing findings in real-world applications, advancing composite material production.

0 days 00 hr 00 min 00 sc

Elastomeric Foam Simulation Using Abaqus Subroutines

Original price was: € 270.0.Current price is: € 243.0.
This study focuses on modeling the mechanical behavior of open-cell, isotropic elastomeric foams. It is essential for applications in materials science and engineering. The project offers insights into designing customized elastomeric foam materials tailored for impact protection in automotive, sports equipment, and aerospace industries. Numerical simulations, using software like Abaqus, enable the prediction of complex behaviors such as hyperelasticity and viscoelasticity under various loading conditions. This finite element analysis of elastomers includes theoretical formulations for hyperelastic constitutive models based on logarithmic strain invariants, crucial for accurately describing large deformations. Practical benefits include the implementation of user-material subroutines in Abaqus, facilitating future extensions to incorporate strain-rate sensitivity, and microstructural defects analysis. This comprehensive approach equips learners with theoretical knowledge and practical tools to advance elastomeric foam simulation. Moreover, it enhances their capability to innovate and optimize materials for diverse applications.
0 days 00 hr 00 min 00 sc

Simulation of an Ultrasonic Transducer (3D Ultrasonic Vibration Assisted Turning Tool)

 190.0

Since the invention of ultrasonic vibration assisted turning, this process has been widely considered and investigated. The reason for this consideration is the unique features of this process which include reducing machining forces, reducing wear and friction, increasing the tool life, creating periodic cutting conditions, increasing the machinability of difficult-to-cut material, increasing the surface quality, creating a hierarchical structure (micro-nano textures) on the surface and so on. Different methods have hitherto been used to apply ultrasonic vibration to the tip of the tool during the turning process. In this research, a unique horn has been designed and constructed to convert linear vibrations of piezoelectrics to three-dimensional vibrations (longitudinal vibrations along the z-axis, bending vibrations around the x-axis, and bending vibrations around the y-axis). The advantage of this ultrasonic machining tool compared with other similar tools is that in most other tools it is only possible to apply one-dimensional (linear) and two-dimensional (elliptical) vibrations, while this tool can create three-dimensional vibrations. Additionally, since the nature of the designed horn can lead to the creation of three-dimensional vibrations, there is no need for piezoelectric half-rings (which are stimulated by a 180-phase difference) to create bending vibrations around the x and y axes. Reduction of costs as well as the simplicity of applying three-dimensional vibrations in this new method can play an important role in industrializing the process of three-dimensional ultrasonic vibration assisted turning.

In this example, how to model all the components of an ultrasonic transducer and its modal and harmonic analysis are taught in full detail.

Abaqus convergence tutorial | Introduction to Nonlinearity and Convergence in ABAQUS

 120.0

This package introduces nonlinear problems and convergence issues in Abaqus. Solution convergence in Abaqus refers to the process of refining the numerical solution until it reaches a stable and accurate state. Convergence is of great importance especially when your problem is nonlinear; So, the analyst must know the different sources of nonlinearity and then can decide how to handle the nonlinearity to make solution convergence. Sometimes the linear approximation can be useful, otherwise implementing the different numerical techniques may lead to convergence.

Through this tutorial, different nonlinearity sources are introduced and the difference between linear and nonlinear problems is discussed. With this knowledge, you can decide whether you can use linear approximation for your nonlinear problem or not. Moreover, you will understand the different numerical techniques which are used to solve nonlinear problems such as Newton-Raphson.

All of the theories in this package are implemented in two practical workshops. These workshops include modeling nonlinear behavior in Abaqus and its convergence study and checking different numerical techniques convergence behavior using both as-built material in Abaqus/CAE and UMAT subroutine.

Laser forming simulation tutorial in Abaqus

 120.0
(1)
The laser forming process is performed by applying thermal stresses to the workpiece surface by heating the surface with a laser beam. These internal stresses induce plastic strains in the part resulting in local elastic-plastic deformation (Laser-induced plastic deformation). In this laser forming simulation tutorial the DFLUX subroutine is used to apply heat flux (Gaussian heat distribution) dependent on location and time in finite element simulation. For example, the linear heating processes of laser forming and welding (with a slight simplification) can be simulated by this subroutine. In the linear heating process, by applying heat flux to the surface of a sheet, a thermal gradient is created in its thickness. This thermal gradient causes permanent deformation of the sheet. To simulate the laser forming process, it is necessary to apply a time and location-dependent heat flux to the sheet. In this type of loading, a heat flux is applied on the plate, which is defined using the DFLUX subroutine, including the laser power, movement speed, beam diameter, absorption coefficient, and laser movement path according to the designed experiments (Laser forming process parameters). To verify this Abaqus laser forming simulation, the simulation results and experimental results of sheet deformation (U) are compared. The displacement of the sheet in the simulation is in good agreement with the experimental results.

Friction Stir Welding simulation Tutorial | FSW Advanced level

 100.0
(1)
Friction stir welding (FSW) involves complex material flow and plastic deformation. Welding parameters, tool geometry, etc., have important effects on the material flow pattern, heat distribution, and eventually on the structural evolution of the material. In an Abaqus friction stir welding example, the rotational movement of the tool and its friction in contact with the workpiece causes heat generation, loss of strength, and an increase in material ductility around the tool. The feeding movement of the tool causes the material to transfer from the front of the tool to the back of it, and eventually leads to a join. Therefore, heat plays an important role in this process, and parameters such as rotational speed, tool feeding speed, tool geometry, and others, all somehow have a significant impact on controlling the amount of incoming heat, the disturbance and flow pattern of the material, the evolution of the microstructure, and the quality of the resulted weld. This friction stir welding example simulation tutorial shows you how to simulate the Abaqus FSW simulation process in such a way that you can accurately predict the effect of all relevant parameters on the process. In most of the implemented projects, welding mud, and welding defects (welding overfills and overlaps, weld gaps) are not visible and predictable; however, in this simulation, these cases are visible. This project is designed to enhance participants' understanding of how to accurately simulate the FSW process to see the weld's general appearance.

Airfoil simulation with different angles of Attack | Ansys fluent

 220.0
(1)
Airfoils are a vital and important part of many industrial units. For example, in many kinds of rotary equipment such as gas turbines and wind turbines or compressors, airfoils play a vital role. Another usage of airfoils is in the aviation industry, which they used in airplane wings. The crucial parameters that are important in airfoils are the drag and lift forces or drag and lift coefficients. By using these parameters, we can design better airfoils to achieve greater lift coefficients and lesser drag coefficients. With this package, you learn airfoil simulation; how to design, mesh, and simulate an airfoil. Also, you learn how to link MATLAB to Ansys Fluent to change the geometrical constraints and boundary conditions automatically (airfoil simulation Ansys). You can use this method for your own optimization.

Sloshing Simulation in Cylindrical Water Storage Tanks: An Abaqus Modeling Framework

 120.0
(1)
Liquid storage tanks have many applications in water supply systems and industrial environments. However, seismic damages to these tanks present significant challenges. One of the well-known damages observed in tanks during earthquakes is roof fracture caused by liquid sloshing. Sloshing is a phenomenon that liquid surface moves during seismic events. In this project, we used ABAQUS for the sloshing simulation in ground-supported cylindrical tanks. The tank experiences the acceleration of the El-Centro earthquake. The Abaqus sloshing simulation involves the calculation of Rayleigh damping factors and natural frequencies, employing the ALE meshing technique, and incorporating hourglass controls in Abaqus. We have suggested two ways for the tank sloshing simulation: one involves assigning a low viscosity to the water, and the other is applying Rayleigh damping factors with the assumption of an inviscid fluid. For verification, we modeled a water tank and compared the results with those obtained in the following paper: “Parametric study on the dynamic behavior of cylindrical ground-supported tanks”

Cold Forming Simulation Using Abaqus CAE | Residual Stress Analysis

 59.0
(1)
Have you ever heard of cold forming process? It refers to the reshaping of metals into desired forms at room temperature. It suits well for parts requiring high precision and a good surface finish.  While cold forming offers many advantages, it is important to consider the potential for residual stresses within the material. The residual stresses in cold-formed components can influence their behavior, potentially affecting the quality of the final product. Experimentally measuring these stresses can be challenging. Numerical simulations offer a solution for cold forming residual stress analysis. Among the available numerical methods, Abaqus cold forming simulation has gained significant attention from researchers and practitioners. This training explores Abaqus cold forming analysis in detail. It includes three workshops that cover different steps in the cold forming process. For validation purposes, we have compared the results for the numerical simulation of cold forming with a reference solution for each workshop.