Showing 73–96 of 119 results

Simulation of cohesive fatigue in Abaqus with subroutine

 280.0
In this training package, cohesive fatigue based on Khoramishad's model has been implemented in the USDFLD subroutine and used on a single joint connection

Simulation of SMA in Abaqus with UMAT

 320.0
(4)
Shape-memory alloys (SMAs) have the ability to recover their original shape, thanks to the shape-memory effect and superelasticity. These unique characteristics have led to the broad usage of SMAs in engineering and medical applications. Simulations offer cost-effective methods for analyzing SMAs’ behavior, ultimately enhancing their reliability and performance. Consequently, researchers frequently employ simulations to investigate SMA-based systems. This educational package begins by exploring the fundamentals of SMA wires, presenting their various types and specific capabilities. It then provides the necessary constitutive equations to describe the behavior of SMAs in simulation. The package includes a flowchart and a step-by-step guide for writing a subroutine to model SMAs in Abaqus. Users will also discover a workshop that uses Abaqus to simulate the superelasticity effect in SMA wires. This workshop not only offers guidance on the simulation and the implementation of the subroutine, but also compares the result with an analytical solution for verification.

Python scripting in ABAQUS Part 2

 240.0
This training package includes workshops that help you to learn about advanced Python scripting in Abaqus software. This is the most comprehensive tutorial containing advanced ways to write the Abaqus script. The subjects such as interrogation in output databases, Kernel plug-ins, RSG plug-ins, etc., are covered in this tutorial.

Lemaitre Damage model implementation with VUMAT Abaqus

 250.0
(7)
The Lemaitre damage model is now widely used to deal with coupled damage analyses for various mechanical applications. In this package, Firstly, we try to introduce the Lemaitre damage model, including damage mechanics and formulation of the Lemaitre damage model. Then, writing the Lemaitre subroutine is reached step by step. To do this job, the flowchart of the subroutine, Writing the subroutine line by line, implementation of the subroutine in one element and verification is done. In the last chapter, we implement this subroutine in a complex problem, the upsetting process.  

Thermal Heat Transfer in Abaqus

 120.0
(1)
This package is related to Thermal Analysis in Abaqus. This package helps Abaqus users to simulate professionally. In general, Abaqus can solve the following types of heat transfer problems (For thermal and thermo-mechanical problems):
  • Uncoupled heat transfer analysis 
  • Sequentially coupled thermal-stress analysis
  • Fully coupled thermal-stress analysis
  • Adiabatic analysis
 

Introduction to VUEL Subroutine in ABAQUS

 210.0
(3)
VUEL is the UEL subroutine for the Explicit solver. UEL is for the Standard solver, and VUEL is for the Explicit solver. Of course, there are some other differences between these two subroutines as well, such as in inputs, variables, etc. This tutorial package is used for writing the most sophisticated subroutines in ABAQUS, VUEL, which are applicable to customized problems. The stiffness matrix and nodal forces are the output of the subroutine, which can be defined based on several variables. This tutorial package contains two workshops: the first is divided into three sections, which model truss elements, and the second workshop explains how to use VUEL and VUMAT subroutines in one model.

Python scripting in ABAQUS Part1

 195.0
(11)
This training package includes workshops that help you to learn how to use Python scripting in Abaqus software. This is likewise the most comprehensive tutorial for the script, and it is appropriate for beginners to advanced users. The subjects such as parameterization, optimization, sequential running and etc., are covered in this tutorial.

Simulation of Fatigue in Abaqus

 45.0
(2)
This training package includes workshops that teach you the XFEM method to simulate crack growth. This tutorial package enables you to model crack propagation in any 2D and 3D dimensional model. In addition, you will learn about the Paris law, direct cyclic approach, traction-separation law, and other theories that help you to simulate a crack growth problem in this package

Analysis of Heat Transfer in Abaqus

 75.0
(1)
This Analysis of Heat Transfer in Abaqus package includes workshops that help you to fully learn how to simulate the temperature distribution and heat flux in solids under thermal loads. This tutorial package enables you to model thermal responses including all the modes of heat transfer, namely conduction, convection and radiation. The subjects such as using film conditions to simulate the convective heat transfer, the dissipation of the frictional heat generated, thermomechanical analysis and etc. are covered in this package

💿Abaqus Tutorial for Beginners (Abaqus for Civil Engineering)

 320.0
(12)
In the present Abaqus tutorial for civil engineering package, we, "The CAE Assistant", have presented all the Abaqus basic skills that a civil engineer needs when he/she wants to use his/her engineering knowledge in computer-aided designing. Abaqus tutorial for civil engineering covers all your need to simulate concrete, reinforcements, buckling, frequency, damage, composite, cohesive and more topics related to Abaqus structural analysis tutorial. You can watch the demo video for more information.

Green Cart

 100.0
This card is for consulting services, and you must make an appointment before paying. Pay only if this product is emailed to you.

Yellow Cart

 150.0
This card is for consulting services, and you must make an appointment before paying. Pay only if this product is emailed to you

3D continuum Abaqus HASHIN progressive Damage for composite materials (VUMAT Subroutine)

 320.0
(10)
This tutorial teaches how to simulate damage in 3d continuum composite materials in ABAQUS. As you know, Abaqus does not have any material model for 3d composite materials. So, the user needs to write a customized subroutine to simulate damage initiation and progressive damage for composite materials in ABAQUS. In this package, one of the most practical damage initiation criteria (Hashin) is used to detect failure. It should be mentioned that this subroutine includes gradual progressive damage based on the energy method. This complex subroutine could be used for static and dynamic problems.

Simulation of Fracture in Abaqus

 75.0
(4)
This package is usable because crack growth and beyond it Fracture phenomenon is one of the most important problems in engineering and getting information about this topic, lets you reduce unpredictable failures in components.

Simulation of forming in ABAQUS

 70.0
(2)
The forming in Abaqus is one of the most important manufacturing processes that can be used for producing different components. In this package, you will learn how to simulate the forming process in Abaqus and you can see the behavior of the material along this process. This package contains some examples that cover rolling, hydroforming, extrusion, ECAP, Cold forging, and drilling processes. Notice: You can access this package 3 days after purchase. 

Simulation of impact in ABAQUS

 60.0
(5)
Impact in Abaqus is one of the most important mechanical tests used to check safety before construction. Due to the expansion of the use of this test in the industry, including the automotive industry, the importance of the issue has increased. In this package, by presenting 7 workshops, we try to teach you most of the capabilities of Abaqus software for this widely used topic.

Introduction to USDFLD and VUSDFLD Subroutine

 170.0
(5)

In this usable tutorial, the material properties can change to an arbitrary dependent variable. One of the most important advantages of this subroutine is simplicity and applicability. Various and high usage examples are unique characteristics of the training package.

This training package includes 5 workshops that help you to fully learn how to use USDFLD and VUSDFLD subroutines in Abaqus software. By means of these subroutines, you will have expertise redefine field variables at a material point by the solution dependence of standard and explicit, respectively.

Abaqus DLOAD Subroutine and VDLOAD Subroutine

 120.0
(5)
This training package helps Abaqus users to prepare complex DLoad and VDLoad subroutines. With the help of these workshops, you can get acquainted with the basic and comprehensive way of DLoad and VLoad subroutine writing and their applications. By viewing this package as an engineer, you can do basic projects with complex loads.

CEL Analysis in Abaqus

 35.0
(2)
This training package includes 2 workshops that help you to fully learn how to use CEL in Abaqus. Also, all the files you need for training, including the training video and the Abaqus Workshop file, will be provided to you.

Module by module Abaqus Training

 60.0
If you are new to Abaqus software and the topic of finite element analysis, you definitely need to get acquainted with the user interface of this software and the general features of each module. In this software, we perform different simulation steps in the following different modules and at the end, we receive the analysis results from the software solver. In this package, you will learn how to work with the software in each module and perform your simulation in each module properly.

Introduction to VFRICTION and VFRIC Subroutines in ABAQUS

 130.0
(3)

This tutorial help you in cases where the classical Columbian equations are more complex and cannot be implemented by the graphical ABAQUS environment. This package introduces and teaches how to write these two subroutines. This introduction contains explaining different optional and mandatory parameters of VFRICTION and VFRIC subroutines.

Optimization in ABAQUS Analysis

 51.0
(4)
This tutorial teaches how optimize topology of a model in ABAQUS. Structural optimization is an iterative process that helps to improve designs and produce parts and components that are lightweight, strong and long-lasting. Topology optimization begins with an initial design, which is assumed to be the maximum physical extent of the component, and determines a new material distribution by changing the density and the stiffness of the elements in the initial design while continuing to satisfy the optimization constraints. In this package different workshops to implement topology optimization are used.

Advanced UMAT Subroutine (VUMAT Subroutine) – Abaqus UMAT tutorial

 240.0
(7)
This training package helps Abaqus users to prepare complex UMAT and VUMAT subroutines. This Abaqus UMAT tutorial package is suitable for those who are familiar with subroutine or want to learn UMAT/VUMAT subroutine Professionally. Equations for computational plasticity based on kinematic stiffness are also discussed. In addition, metal damage has been implemented based on Johnson Cook's model. Watch Demo

Introduction to UEL Subroutine in ABAQUS

 210.0
(8)
UEL stands for User-defined Elements. When you have a finite element analysis that requires an element type that doesn't exist in the Abaqus element library, you must write a UEL subroutine. Or, when you want to define various element shape functions, the UEL would be the best choice. This subroutine is one of the most sophisticated in the Abaqus and is intended for advanced users. With this tutorial package, you can become an advanced user and learn how to write such a complex subroutine. This package contains two workshops: writing a UEL subroutine for a planar beam element with nonlinear section behavior and writing a UEL subroutine for a beam element with specific boundary conditions and loading. Watch Demo